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3. Research Objectives

This Research examines the effectiveness of using deep learning-
* Self Supervised Learning(SSL) Is a type of machine learning based named entity recognition (NER) methods for extracting
where a Model Is trained on unlabeled data allowing it to learn medical entities from unstructured healthcare text data and
patterns and relationships without the need for labeled data. It compares it with traditional rule-based NER methods in terms of
can be used to analyze and extract useful information from accuracy, efficiency, and applicability to different healthcare
clinical text data in healthcare. domains.
« SSL can be used to train models to recognize patterns and

relationships in the data, allowing for more accurate analysis and

« Natural Language Processing (NLP) techniques are used to 4. The Data

extract pertinent information from clinical text data, such as Data is collected from UCI(University of California Irvine). The dataset
Identifying diagnoses, prescriptions, and procedures. contains 58000 health-related tweets from Twitter. It has been sourced from|
over 15 leading health news organizations, including BBC, CNN, and NYT.

. . ) . Data Set Characteristics: Text NMumber of Instances: | 58000 || Area: Computer
Preprocessing Feature Processing Supervised Learning
Attribute Characteristics: Real Number of Attributes: || 25000 || Date Donated 2018-02-19
»| Text cleaning »Word embedding » Feature Integration Associated Tasks: Clustering || Missing Values? MN/A Number of Web Hits: | 78492
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Model Evaluation « The project utilizes a deep learning structure that relies primarily on a
Knowledge Base recurrent neural network (RNN).
UMLS Metathesaurus e : « The data will be cleansed, Pre-processed which involves Tokenization
2019AA = »  UMLS tagging v ]
A " Diseaseor syarome through Jupyter Notebook using pandas, nltk.
ign or Symptom . . .
ontelogy 3) Pharmacologic Substance «  Word and character embeddings are performed using Convolutional

Neural Network(CNN) and (Parts-of-speech)POS tagging methods.
« The training set was used to train both the Long Short Term
Memory Conditional Random Forest (LSTM-CRF) and
BiLSTM-CRF models, subsequently assessed on the testing set.
* Finally, Evaluate the performance using metrics such as
precision, recall, and F1 score.

Figure 1. Overflow of HNER API: Application Programming Interface

2. Literature Review

« Traditional Rule-based Named Entity Recognition(NER)
systems identify specific patterns and named entities however 5. Early Indicators
they have limited scalability and failed to handle ambiguity.

 To overcome these challenges, Deep learning models have been
demonstrated to provide a significant improvement in predictive * Pre-processing and cleaning of data involve tokenization,
modeling by retaining the properties and activities of disease, removing irrelevant tweets and stop words.
symptoms, and drug discovery.
 The Bidirectional _Long Short Term Memory COI’]dI'[IOI’l-a|
Random Forest (BILSTM-CRF) model has demonstrated its
ability to attain a precision exceeding 90%, a recall of 73%, and

an F1-score of 81% when identifying named entities related to
diseases, and syndromes.

« Evaluating the precision, recall, and F1-score on the training and
validation datasets.

* Fine-tuning the model can help improve the accuracy of the
model for specific healthcare domains.
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