

Employee Scheduling & Roster Generation

Final Project Report

Liam Durkan – C00264405

Supervisor: Paul Barry

Date of Submission: 22/04/2024

i. Abstract

This	report	documents	the	development	of	my	Employee	Scheduling	and	Roster	

Generation	system	that	I	undertook	for	my	Final	Year	Project	studying	software	

development	at	SETU	Carlow.	The	projects	goals	were	to	build	a	system	that	stores	staff	

availability,	time	off	requests	and	the	required	shifts	for	a	roster.	The	core	of	the	application	

is	a	genetic	algorithm	that	begins	with	a	random	assignment	of	employees	and	converges	

towards	a	solution.		

The	User	Interface	(UI)	is	a	modern	flutter	application	that	is	known	for	its	cross-platform	

support.	The	API	is	a	Flask	API	using	python	and	the	backend	is	Firebase	for	storage	&	

authentication.		

ii. Acknowledgements:

I	would	like	to	express	my	gratitude	to	my	supervisor	Paul	Barry,	for	his	invaluable	

guidance	and	mentorship	in	guiding	through	the	development	of	this	project.	

I	am	also	thankful	to	my	family	and	friends	for	their	support	during	the	highs	and	lows	of	

this	project,	their	words	of	encouragement	and	belief	in	my	capabilities	have	been	

gratefully	apricated.		

iii. Table of Contents

 ... 1

i. Abstract .. 2

ii. Acknowledgements: .. 2

iv. Table of Figures ... 3

1. Introduc>on ... 4

2. Project Scope ... Error! Bookmark not defined.

3. Problem Statement .. 4

Requirements and Specifica>ons from Func>onal Spec Itera>on 1 .. 6

6. Implementa>on ... 18

7. Tes>ng and Valida>on .. 19

8. Results ... 21

9. Conclusion ... 22

10. Reflec>on and Learning ... 23

11. Appendices .. Error! Bookmark not defined.

iv. Table of Figures

Figure 1 ... 17

1. Introduction

The	Final	Year	Project	(FYP)	is	the	most	important	part	of	final	year,	 it	 is	a	demonstration	of	the	

abilities	and	skills	I	have	learned	over	the	past	four	years	studying	to	become	a	software	developer.		

This	report	is	an	account	documenting	the	problem,	objectives,	design,	and	development	process	

that	 took	place	 to	develop	my	Employee	 Scheduling	&	Roster	Generation	system.	 I	will	 test	and	

evaluate	Iteration	3	to	see	if	it	meets	the	objectives	outlined	in	the	functional	specification.	Further	

I	will	reflect	on	my	processes	and	actions	I	took	in	the	development	cycle	of	this	project,	the	mistakes	

I	made	and	what	I	learned	in	the	process.		

This	projects	aim	is	to	build	an	Employee	Scheduling	&	Roster	management	system.	The	system	will	

generate	rosters	for	a	business’	required	shifts.	Employers	enter	their	shifts	required	for	the	week,	

and	employees	enter	their	availability,	this	combined	with	time	off	requests	assigns	an	employee	to	

each	shift.	The	application	also	serves	as	a	database	for	employees,	centralizing	employee	contact	

information	and	storing	time	off	requests.		

	

	

2. Problem Statement

Every	week	millions	of	managers	across	the	globe	sit	down	to	at	their	desk	to	orchestrate	the	beating	

heart	of	the	business,	the	employees.	Rosters	come	in	many	forms	but	at	all	serve	the	same	purpose,	

to	schedule	an	employee	for	a	shift	in	work.	Creating	a	roster	can	be	a	mundane	task	that	involves	

some	head	scratching,	most	rosters	are	created	statically	using	no	 logic	to	optimize	the	problem.	

Through	my	experience	working	in	independent	hospitality	establishments,	I	found	they	all	lacked	

a	centralized	scheduling	system	or	even	procedure,	beyond	direct	contact	to	a	manager.	The	data	

comes	 in	 many	 forms	 some	 written	 in	 a	 diary,	 some	 requests	 on	WhatsApp	 or	 just	 a	 passing	

conversation.	The	manager	accumulates	all	this	and	produces	a	schedule	that	should	be	correct,	if	

they	didn’t	forget	anything.	

	

Given	a	cafe	with	13	employees:		

• 13	availability	schedules.	

• 13	staff	that	need	a	day	off.		

• 13	staff	that	have	at	least	1	commitment	a	week.	

The	café	has	3	shifts	a	day	and	each	shift	could	be	any	of	the	13	employees	that	would	be		

13	*	13	*	13	=	2197	roster	possibilities	for	one	day.	

	

A	few	points	I	would	like	to	note:		

• The	business	has	no	method	to	store	staff	availability.	

• No	method	to	document	time	off	requests.	

• The	time	spent	manually	fleshing	out	a	roster.		

• The	rostering	relies	on	one	team	member,	due	to	its	informal	nature	if	anybody	but	that	

team	member	attempts	to	produce	a	roster	they	are	starting	from	scratch.		

The	manager	would	like	a	system	that	centralizes	all	the	scheduling	and	employee	information	by	

storing	 their	 employee’s	 availability	 hours,	 leave	 &	 holiday	 requests	 and	 phone	 numbers.	 The	

required	shifts	 for	 the	week	can	be	entered.	Employees	are	assigned	to	shifts	 that	 is	within	 their	

availability	hours.	

Requirements and Specifications from Functional Spec Iteration 1

Core	Functionality		

- Admin	Users:		
• Roster	Generation:	The	core	functionality	of	this	application	is	to	generate	rosters	based	

on	a	set	of	constraints.	The	application	will	use	an	algorithm	that	takes	the	required	shifts	

and	pairs	these	with	employee	availability	and	time	off	requests.	

o Admin	defines	shifts	the	business	requires	for	the	week.	

• Employee	Management:	Employee	users	can	be	created,	updated	and	deleted.		

o Time	Off:	Admin	can	approve	requests	for	time	off.		

o Availability:	Employees	can	set	the	weekly	hours	they	can	work.		

o Emergency	Requests:	Emergency	requests	e.g.	Illness/bereavement	are	requests	for	

the	current	week.	The	system	alerts	the	admin	when	it	occurs	accompanied	by	a	list	

of	employees	not	scheduled	for	the	request	period.		

• Roster	 Management:	 Rosters	 can	 be	 viewed	 and	 edited.	 Rosters	 can	 be	 published	 to	

employees.		

o CRUD:	Past,	current,	and	future	rosters	can	be	viewed	&	edited.		

o Export	Roster:	Rosters	can	be	exported	and	published	to	employees.		

o Republish:	If	the	current	roster	is	changed	during	the	working	week,	employees	will	

receive	an	email	notification.	

- Employee	User		

• View	Roster:	Employees	can	view	published	rosters.	

o An	email	notification	on	new	roster	release.		

• Availability:	Employees	can	input	their	availability	for	when	they	can	work.	

o Availability:		Changes	to	availability	must	be	approved	by	an	admin.	

o Requests:	Employees	can	submit	requests	for	time	off	

o Time	Off:	Employees	can	submit	a	request	for	time	off.		

o Swap	Shifts:	Employees	can	request	to	swap	a	shift	with	another	employee.		

o Emergency	Request:	Employees	can	alert	admin	that	they	cannot	work	a	shift	due	

to	an	emergency.		

Non-Core	Functionality	

- Admin	Users:		

• Admin	Dashboard:	Admin	users	can	view	a	dashboard	displaying	all	related	information	in	

one	place	such	as	upcoming	time	off	for	employees,	a	notification	panel	for	pending	requests.		

• Email	Alerts:	Receive	email	notifications	when	requests	are	submitted	from	staff.		

- Employee	Users:		

• Shift	Request	Handling:	Employees	can	select	a	preference	for	a	particular	shift.	This	is	a	

soft	constraint;	the	shift	is	not	guaranteed	but	will	be	taken	into	account.	

• Temporary	availability:	Employees	can	add	temporary	availability	e.g.	midterm	breaks.		

Accomplishment	of	Requirements		

1. Roster	Generation:	The	system	can	generate	rosters	using	the	provided	data.	The	roster	

generation	takes	the	required	shifts	from	the	employer,	the	list	of	employees	the	employer	

wants	included	in	the	roster	period.	The	roster	generation	method	in	the	API	then	fetches	

the	approved	shifts	request	and	generates	the	roster.	

	

2.	Employee	Management:	

1. Create	Employee:	Employees	can	be	created	from	the	Sign-Up	screen,	or	an	employer	can	

create	a	new	employee	internally	in	the	employees	tab.	Both	ways	register	a	new	user	with	

firebase	and	create	an	employee	tied	to	the	business	in	the	firebase	database.		

2. Retrieve:	Employees	can	be	retrieved.	Methods	to	retrieve	singular	employees	 take	an	

employee	id,	a	list	of	employees	takes	a	list	of	employee	ids,	and	all	takes	nothing.	All	

returns	employee	objects.		

3. Edit	employee:	Employees	can	be	edited	by	an	employer	or	an	employee.	The	employee	

can	edit	all	employees	in	the	employees	tab.	The	employee	can	edit	their	information	in	

the	profile	tab.		

4. Delete	 Employee:	 Employees	 can	 be	 deleted	 by	 an	 employer.	When	 an	 employee	 is	

deleted	it	sets	the	‘is_deleted’	flag	to	TRUE	in	the	db,	then	on	employee	retrieval	there	is	

a	condition	to	exclude	deleted	employees.		

3.	Roster	Management:	

1. Create	Roster:	Rosters	are	generated,	they	can	then	be	saved	to	the	db	after	generation	

at	the	users	discretion.		

2. Retrieve:	Rosters	can	be	retrieved	in	the	rosters	tab	

3. Edit	Roster:	After	a	roster	 is	generated,	the	user	can	use	the	dropdowns	to	selected	

different	employees	for	the	shift.	

4. Delete	Roster:	Rosters	can	be	deleted	from	the	rosters	tab;	 this	sets	the	 ‘is_deleted’	

bool	to	false.		

5. Export:	Roster	can	be	exported	to	a	csv	file;	this	file	structure	allows	the	employer	to	

manipulate	it	any	way	they	need.		

6. Publish	Roster:	Rosters	can	be	published/republished.	Publishing	a	roster	attaches	the	

exported	csv	file	to	an	email	and	delivers	it	using	flask	mail.	Please	note	that	for	this	

product	the	mail	is	using	a	demo	SMPT	server	therefore	I	can	only	address	emails	to	my	

personal	email	address.			

	

	

Roster Generation Algorithm

The	 core	 feature	 of	 the	 app	 is	 that	 is	 generates	 rosters,	 the	 process	 of	 the	 roster	 generation	 is	

assigning	employees	to	a	shift.	I	have	experience	producing	rosters	for	small	cafes	so	my	goal	was	

to	translate	this	process	into	a	form	that	an	algorithm	could	process.	I	fleshed	out	on	paper	what	

the	minimum	data	 required	 from	users	would	 be	 for	 a	 viable	 solution.	My	 research	 led	me	 to	

timetabling	solutions	and	how	the	genetic	algorithms	can	be	implemented	to	produces	classroom	

schedules.	Using	these	solutions	as	inspiration	I	built	the	algorithm	around	the	datapoints	I	had	

and	created	a	fitness	solution	that	would	calculate	the	fitness	of	a	possible	solution.		

The	genetic	algorithm	used	in	this	application	takes:		

1. A	list	of	shift	objects	

2. List	of	employee	objects.	

3. List	of	approved	requests.		

Using	this	then	preforms	the	following	steps:	

1. Randomly	assigns	an	employee	to	a	shift.	

2. Calculates	the	fitness	(inverse	of	conflicts).	

3. Preforms	the	genetic	algorithm:	

a. Selection	

b. Mutation		

c. Crossover	

4. Returns	a	solution	with	zero	conflicts.		

Figure 1

initalise_population(population_size,	employees,	num_shifts):	

• population	size:	The	number	of	chromosomes	to	generate.	

• employees:	The	list	of	employee	objects	for	this	roster		

• num_shifts:	The	number	if	shifts	in	the	roster.		

• This	method	 creates	 a	 chromosome	which	 is	 like	 an	 array.	 The	 chromosome	 has	

indexes	where	x	is	the	number	of	shifts.	

• Randomly	assigns	an	employee	id	to	each	index.	

• The	method	will	return	x	chromosomes	representing	a	roster	solution	where	x	is	the	

population_size.	

• In	my	program	I	am	returning	10	that	progress	to	the	next	stage.		

calculate_fitness():	

• Calculates	the	fitness	of	a	chromosome,	representing	the	number	of	conflicts.		

• Fitness	is	calculated	by	summing	the	number	of	conflicts,	it	is	inversely	proportional	to	the	

total	number	of	conflicts	so	the	lower	the	conflicts	the	higher	the	fitness.		

shi% 1 shi% 2 shi% 3 shi% 4 shi% 5 shi% 6 shi% 7 shi% 8 shi% 9 shi% 10

emp2 emp2 emp3 emp1 emp2 emp1 emp3 emp3 emp1 emp2

• The	conflicts	that	are	penalized	are:	

§ Employee	is	available	during	the	shift	times.	

§ Employee	 is	 not	 working	 more	 than	 their	 max	 shifts	 per	 week	 or	 the	 global	

maximum	set	by	employer.	

§ Employee	is	only	working	one	shift	per	day.		

§ Shift	is	not	during	approved	time	off.	

§ Recently	added;	Penalise	if	employees	are	unevenly	distributed.		

• Returns	the	fitness	value	and	the	number	of	conflicts	in	the	chromosome.	

calculate_initial_fitness(initial_population,	individual_shifts,	employees):	

• This	is	a	helper	method	as	calculate_fitness	can	only	take	1	chromosome	at	a	time,	

so	it	takes	the	x	chromosomes	that	were	initialized	in	initialize	population	and	puts	

them	through	one	by	1.		

• Returns	a	list	of	x	chromosomes	with	their	fitness	and	conflicts			values.		

roulette_wheel_selection(population,	num_selection):	

• Takes	a	population	of	chromosomes,	each	chromosome	has	a	fitness,	the	probability	

of	a	chromosome	being	picked	is	directly	related	to	the	weight	of	its	fitness.		

• Spins	a	wheel,	the	higher	the	fitness	the	more	likely	of	getting	chosen.		

• Selects	and	returns	x	chromosomes	where	x	is	‘num_selection’.	

	

crossover(parent1,parent2)	

• parent1	&	parent2:	chromosomes	chosen	in	roulette	wheel.	

• Random	number	between	1	-	chromosome	length	is	generated.	

• parent1	 &	 parent2	 are	 split	 at	 the	 crossover	 point	 and	 	 appended	 to	 the	 other	

chromosome.	

random	=	4	

create_offspring(selected_for_crossover,	individual_shifts,	employees)	

• ‘selected_for_crossover’:	List	of	dictionaries	representing	selected	chromosomes	crossover.		

• ‘individual_shifts’:	Shift	objects	representing	the	shifts	available	for	scheduling.	

• ‘employees’:	Employee	objects	available	for	current	rostering	persion		

emp2 emp2 emp3 emp1 emp2 emp1 emp3 emp3 emp1 emp2

emp1 emp3 emp3 emp2 emp1 emp3 emp2 emp1 emp3 emp2

emp2 emp2 emp3 emp1 emp1 emp3 emp2 emp1 emp3 emp2

emp1 emp3 emp3 emp2 emp2 emp1 emp3 emp3 emp1 emp2

• This	function	takes	the	two	selected	chromosomes	from	the	roulette	wheel,	calls	the	

crossover	method,	calculates	the	fitness	of	the	returned	chromoseomes	and	returns	them	

as	a	list	of	dictionaries.		

	

mutate_population(population,	employees,	mutation_rate)	

This	is	responsible	for	increasing	random	changes	to	add	diversity	to	the	population.		

• population:	It	takes	the	current	population	of	chromosomes	as	input.	
• employees:	It	requires	information	about	the	employees,	which	may	be	used	for	

generating	new	genes	during	mutation.	

• mutation_rate:	The	probability	of	an	employee	assigned	to	a	shift	being	swapped	for	
a	different	employee.	

• The	loop	iterates	through	each	index	in	the	chromosome,	if	a	random	probability	is	
less	than	the	‘mutation	_rate’	a	random	employee	is	swapped	in.		

	

algorithm(next_generation,	individual_shifts,	employees,	num_selection,	
population_size):	

• ‘next_generation’:	Population	of	chromosomes	representing	a	shift.		

• ‘individual_shifts’:	Individual	shifts	that	need	to	be	assigned	to	employees.	

• ‘employees’:	The	list	of	selected	employee	objects	for	the	rostering	period.	

• ‘num_selection’:	The	number	of	chromosomes	selected	for	crossover	in	each	

generation.	

• ‘population_size’:	The	size	of	the	population	of	chromosomes.	

This	function	repeats	the	selection,	crossover,	mutation	&	fitness	check,	each	time	creating	new	

possible	solutions	converging	towards	0	conflicts.		

	

assign_shifts(chromosome,	individual_shifts,	employees):	

• ‘chromosome’:	The	solution	returned	from	the	algorithm	with	zero	conflicts	and	a	

fitness	of	1.0.	

• This	method	iterates	through	the	chromosome,	from	the	‘employee_id’	

representing	an	employee	assigned	to	a	shift	in	the	chromosome,	it	populates	the	

employee	attribute	if	the	individual	shirt	with	the	employee	object.			

	

generate_roster(individual_shifts,	employees,	approvedRequests)	

• ‘approved_requests’:	List	of	approved	request	objects		

• individual_shifts’:	Individual	shifts	that	need	to	be	assigned	to	employees.	

• ‘employees’:	The	list	of	selected	employee	objects	for	the	rostering	period.	

This is the main of the roster genera;on algorithm, it calls all the other methods and keeps track
of the runs.

1. A for loop runs a loop x ;mes. For this itera;on we have maximum set to 5.
2. Ini;alise popula;on func;on
3. Calculate ini;al fitness func;on
4. Run the algorithm that converges ;ll conflicts are 0
5. If no result has returned && below ‘max_genera)ons’
6.

5.3 Entity-Relationship Diagram

Figure 2

6. Implementation

Front	End:	The	front	end	of	this	application	is	developed	using	Flutter.	While	I	had	prior	

experience	with	other	front	end	languages	such	as	react	and	windows	forms	the	cross-platform	

support,	quick	UI	and	modern	interfaces	interested	me.	

API:	Implemented	using	Python3	and	Flask,	the	API	serves	as	the	core	to	my	application.	The	API	

is	currently	hosted	on	Render	Web	Service.	To	streamline	development	&	deployment	processes	

the	API	automatically	updates	&	redeploys	when	a	change	is	pushed	to	the	GIT	repo.		

Database:	My	project	is	using	Firestore	as	the	database	for	this	project,	I	chose	firebase	as	it	has	

integrate	with	flutters	cross-platform	support	providing	supported	access	to	their	systems.	

Authentication:	Username	&	Password	authenticated	is	being	handled	by	firebase	authentication	

offering	secure	and	reliable	access	control.		

User	&	System	Requirements		

System:	Currently	the	application	can	be	accessed	two	different	ways.		

Webapp	can	be	accessed	from	browser	on	desktop	or	on	mobile	device.	IOS	app	is	compiled	for	

devices	on	IOS	11+		

The	UI	uses	a	 responsive	 layout	widget	 to	determine	 if	 the	 screen	width.	 If	 the	 screen	width	 is	

greater	than	650	pixels	the	desktop	UI	is	displayed,	if	it	is	below	650	the	mobile	UI	is	displayed		

User	Requirements:		

1. Business	user	sets	up	businesses	account,	enters	business	opening	&	closing	time.		

2. Employee	 user	 signs	 up	 under	 a	 business.	 Once	 they	 enter	 their	 availability	 it	 can	 be	

factored	into	the	rosters.		

	

7. Testing and Validation

• During	the	development	of	my	project,	I	used	postman	to	build	and	test	API	

endpoints.	This	was	an	application	I	used	throughout	my	internship	and	not	only	

drastically	sped	up	the	development	process	but	allowed	me	to	create	a	series	of	

postman	tests	to	verify	the	expected	output	of	http	request.		

Figure 3

• An important part of this application for me was the UI and how it fells to use. No matter

how good the back end is, an employee & employees don’t see that part and struggle to

see beyond a bad UI. My UI has been tested on web using chrome & on an iPhone.

• To test the roster generation process I created a series of situations setting employees to

available and unavailable, days and then generated a roster with these, I check to make

sure that the employee was not scheduled on the day. The fitness function on the roster

generation is itself a test as it is checking to make sure that a possible solution has zero

conflicts.

8. Results

The	 system	 has	 met	 all	 the	 core	 requirements	 except	 one.	 One	 of	 the	 core	

requirements	was	for	the	employees	to	be	able	to	make	a	request	to	swap	a	shift	

with	 another	 employee.	 This	 requirement	 came	 from	 a	 selling	 point	 that	would	

attract	 employees	 to	 use	 the	 application.	 After	 a	 lot	 of	 deliberation	 between	

adhering	to	my	functional	specification	I	chose	the	route	to	deviate	and	implement	

a	method	 for	 employers	 to	 change	 the	 roster,	 using	dropdowns	with	 employees’	

names	after	generation.	This	new	feature	then	checks	 if	 the	selected	employee	 is	

available	 for	 that	 shift,	 with	 visual	 cues	 if	 not.	 This	 is	 a	 prime	 example	 of	 agile	

methodology	in	the	development	lifecycle.	As	I	wrote	the	spec	I	had	to	channel	the	

mindset	of	what	an	employer	would	want	from	this	application.	I,	the	employer,	did	

not	know	what	I	wanted	from	my	product	and	thought	that	the	generation	would	

be	sufficient.	Sometimes	an	employer	will	want	to	put	an	employee	on	a	specific	

shift,	this	could	be	for	many	reasons	involving	the	schedule	of	the	business	that	day.	

Therefore,	cutting	the	staff	swap	shift	request	in	favor	of	editing	a	generated	roster	

is	a	more	valuable	asset	to	the	overall	application,	and	adding	the	visual	cues	that	

that	employee	cannot	work	the	shift	is	a	bonus	feature	by		taking	advantage	of	the	

data	we	already	have	in	our	system.		

The roster generation algorithm was initially built in jupter notebook and then refactored

into the system. It has undergone a lot of tweaking to try and prevent it getting stuck in a

local maximum or minimum where it will not find a possible solution. To counteract this I

have recently introduced a mutation rate that increases as by a factor of 1.2 each time the

algorithm runs, which is capped at a maximim of 5. This addition has increased the speed

of the algorithm and reduced failed attempts.

9. Conclusion

In	conclusion	this	project	has	successfully	developed	a	roster	generation	algorithm	that	meets	the	

specified	 objectives.	 The	 application	 offers	 businesses	 a	 centralized	 system	 to	 manager	 their	

employees	scheduling	an	rostering	needs,	saving	hours	dealing	with	roster	related	

Through	the	project	I	have	achieved	the	following	key	findings:	

1. Implemented	a	roster	generation	algorithm	that	efficiently	assigns	shifts	to	employees	by	

converging	towards	a	solution	with	0	conflicts.		

2. Developed	a	modern	user-friendly	interface	that	is	cross	platform,	available	as	a	webapp	

or	on	IOS.		

3. Implemented	a	solution	for	employees	to	submit	time	off	requests	and	for	employers	to	

approve/deny	them.	

	

• Future	Work	

1. Employees	can	request	to	swap	a	shift	with	another	employee.	

2. Calendar	on	dashboard	showing	employer	upcoming	requests.		

3. Android	app	to	increase	availability	across	the	market.		

4. Distribution	of	employees	across	shifts	customization.		

5. Soft	constraints	such	as	staff	having	low	priority	preferences	for	days	off.		

6. Seed	 future	 roster	generations	with	previous	ones.	This	will	 create	consistency	across	

rosters.		

10. Reflection and Learning

• The	 FYP	 is	 my	 biggest	 and	 proudest	 accomplishment	 in	 my	 career	 to	 date.	 It	 is	 a	

representation	of	my	capabilities	as	a	developer	and	has	the	skillset	I	have	acquired.	

Many	of	 the	 skills	 I	 have	 improved	on	with	 this	project	 are	 technical,	 but	 the	most	

important	 skills	 I	 take	 away	 from	 this	 project	was	 the	 process	 of	 development.	 The	

development	process	was	such	a	 learning	experience.	Countless	errors,	mistakes	and	

wrong	decisions	got	frustrating,	some	days	I	made	zero	progress	with	code,	maybe	even	

less	 than	 when	 I	 began,	 but	 looking	 back	 all	 those	 hours	 spent	 debugging	 and	

researching	was	hours	of	consuming	knowledge,	which	is	invaluable.	An	example	of	this	

is	my	journey	with	Flutter.	Seven	months	ago	I	had	never	heard	of	flutter,	although	I	

had	experience	in	react	the	cross-platform	support	was	a	major	selling	point	to	me.	I	

dived	into	my	final	year	project	and	the	first	step	was	to	learn	a	new	language.	There	

was	an	initial	learning	curve	to	it	as	expected,	my	first	UI	screen	was	not	only	clunky	to	

use	 but	 terribly	 coded,	 as	 I	 became	 more	 versed	 in	 the	 language,	 	 I	 found	 myself	

refactoring	perfectly	functional	screens	that	resulted	in	no	UI	changes,	just	to	improve	

the	structure,	reflecting	my	skills	improving.		

While	I	had	experience	in	maintaining	C#	APIs,	this	was	the	first	python	one	I	built	

from	 the	 ground	 up.	 I	 thoroughly	 enjoyed	 the	 development	 of	 the	 API	 and	

conceptualizing	the	data	flow	within	the	system,	it	broadened my	horizon	on	how	many	

of	our	systems	today	are	simply	moving	and	manipulating	data,	and	sparked	in	interest	

in	me	to	see	what	other	problems	I	can	solve	with	my	technical	knowledge.		

This	project	has	been	an	immense	learning	experience	that	has	made	an	impact	on	my	

future	career	choice.		I’ve	come	to	recognize	my	interests	and	abilities	and	want	to	direct	

them	into	back-end	development,	from	this	I	am	taking	clarity	and	a	confidence	as	a	

developer.	

