

Research Report

Maldive

Malware Analysis Tool

Shane Doherty C00249279

Supervisor: Joseph Kehoe

South East Technological University

Started 17/10/22

2

Abstract

The threat that comes with malware continues to evolve as the security to prevent it moves

alongside. For this to happen, new exploits in the underlying system must be investigated and

understood. The goal of this project is to create a program that can effectively detect and

analyse malicious programs. The method to which this will be performed is dynamic malware

analysis, which extracts the executable code from a program. The malicious code will be

executed, and will examine the steps that the program runs through in its process.

Through dynamic malware analysis, the program will be able to identify potential malicious

activity and extract valuable information such as network traffic, memory values, and the

instruction set used by the program.

3

Table of Contents

1. Introduction 4

2. Malware 4

2.1. Spyware 4

2.2. Ransomware 5

2.3. Scareware 6

3. Malware Analysis 7

4. Portable Executable 7

4.1. File version 8

5. Java Native Interface 9

6. Virtual Memory 9

6.1. Process Access Rights 10

6.2. Page Protection 11

6.3. Memory Basic Information 13

6.4. Querying 13

6.5. Read Memory 13

7. Dynamic Malware Analysis 14

7.1. Analysis Techniques 14

7.1.1. Function call monitoring 15

7.1.2. Information flow tracking 15

7.2. Evasion 15

7.3. Analysis Environment 16

8. Existing Tools 16

8.1. Wireshark 16

8.2. Regshot 17

8.3. EDB 17

9. Libraries 18

9.1. Capstone 18

10. Operating System 19

10.1. Linux 19

10.2. Windows 19

11. Conclusion 19

12. References 20

13. Additional Materials 21

4

Table of Figures

Figure 1 Ransomware in operation (Akamai, n.d.) 6

Figure 2 Screenshot of WannaCry (Wikipedia, 2023) 7

Figure 3 Hex viewer of .exe file 8

Figure 4 Text views of .exe files 9

Figure 5 Generated .h file 10

Figure 6 Mapping virtual memory to physical memory (Abraham Silberschatz, n.d.) 11

Figure 7 Process Access Rights (Microsoft, n.d.) 12

Figure 8 Opening process with access right 12

Figure 9 Memory Protection Constants (Microsoft, n.d.) 13

Figure 10 Changing protection with protection constant 13

Figure 11 MEMORY_BASIC_INFORMATION structure (Microsoft, n.d.) 14

Figure 12 Query Function 14

Figure 13 Reading Process Memory 15

Figure 14 Intel Protection Ring (Wikipedia, 2022) 16

Figure 15 Wireshark GUI 18

Figure 16 Evan's Debugger (Teran, n.d.) 19

5

1. Introduction

This report contains documented research into dynamic malware analysis, with methods to

analyse a program, along with methods that malicious code use to obscure and evade

analysis. Given a thorough definition of different types of malware that the application is

expected to handle, it should be clearly outlined what information is necessary to understand

when going forward with the project.

2. Malware

Malicious software (malware) is the blanket term given to a program designed with nefarious

intentions. This term is used to describe any type of malicious code, although there is a wide

variety of ways this is done. Malware can be designed to steal personal or sensitive

information, disrupt normal system operations, or allow unauthorised access to a system or

network. Malware can be introduced to a system through various methods such as email

attachments, downloads from untrusted sources, or infected software updates.

Once a system is infected, malware can carry out a variety of malicious activities including but

not limited to, data theft, system hijacking, keylogging, ransomware attacks, and denial of

service attacks. Malware can be designed to be stealthy and go undetected for long periods

of time, making it difficult to identify and remove from a system.

The goal of this project is to provide tools to effectively scan a piece of software to determine

if it is collecting sensitive information or otherwise being used to harm the users device.

2.1. Spyware

Spyware is a specific type of malware designed to gather information from a user's computer

or device without their knowledge or consent. It can collect sensitive information such as

browsing habits, keystrokes, passwords, and personal information that can be used for

malicious purposes such as identity theft, fraud, and blackmail. This type of malware will

attempt to steal sensitive information from the victim’s computer. The ways this is done can

differ, with one method being using a keylogger to track which keys are being pressed, and

sending the log to a server controlled by the attacker. As the keylogger can be enabled on

the entire device, it does not need to hook onto a single process to be effective.

Spyware is often introduced to a system through downloads from untrusted sources, email

attachments, or by exploiting vulnerabilities in software or operating systems. It can also be

bundled with other software, often disguised as a legitimate program, and installed

unknowingly by the user.

Once installed, spyware can run silently in the background, monitoring the user's activity and

sending information back to a remote server. Some spyware can even take control of a

6

user's webcam or microphone, allowing for unauthorised monitoring of their physical

surroundings.

2.2. Ransomware

Ransomware can be one of the most disastrous types of malware, considering attackers

usually target high-value companies. The goal of ransomware is to encrypt vital data on a

victim’s system, then demand a payment for the encryption to be removed. As the encryption

requires a key to be unencrypted, this is generally what the attacker will claim to trade for the

ransom.

Figure 1 Ransomware in operation (Akamai, n.d.)

Ransomware can be spread through a variety of methods, including phishing emails, malicious

downloads, and exploit kits. Once a system is infected, the ransomware will quickly begin to

encrypt files and data on the victim's system, making them inaccessible to the user. The

ransomware will then typically display a message demanding payment in exchange for the

decryption key needed to unlock the encrypted files.

Attackers often demand payment of some form, most commonly in cryptocurrency such as

Bitcoin, as it allows for anonymous transactions that are difficult to trace. However, even if a

victim pays the ransom, there is no guarantee that the attacker will provide the decryption key

needed to unlock the encrypted files. In some cases, even after payment has been made, the

attacker may demand additional payments or refuse to provide the decryption key at all.

The impact of a successful ransomware attack can be severe, with potential consequences

including the loss of critical data, downtime for businesses, and damage to reputation and

customer trust. This makes ransomware a highly dangerous form of malware when targeting

large companies in a cyber attack.

7

A popular example of ransomware is the WannaCry software, which encrypted many files on

the victim’s computer, demanding payment within a certain timeframe to retrieve a

decryption key (Wikipedia, 2023). The timeframe was a short period, which was done to

pressure the victim into sending the payment before analysis of the program could be

completed. Should the payment not be sent in this period, the files were permanently locked

and unable to be decrypted. This particular attack was particularly noteworthy due to the

scale of which it was distributed, with over 230,000 computers being infected in a single day.

This was achieved by using an infected system to distribute the malware over the network,

compromising any other computer that was connected to it. While the amount of devices that

were infected were high, the associated Bitcoin wallet showed that only 327 paid the

ransom, totalling a payment amount of 51.62396539 BTC (US$130,634.77).

Figure 2 Screenshot of WannaCry (Wikipedia, 2023)

2.3. Scareware

Scareware can be very difficult to analyse and detect, considering it does not directly cause

harm to the system. Instead, it will be disguised as a program such as anti-malware, then give

false statistics to how infected a system is. The scareware will then ask for a payment for full

access to the program, and to repair the “infected” system. As opposed to traditional malware,

this method relies on social engineering to steal from the victim.

8

Scareware typically preys on a user's fear and lack of technical knowledge. It is designed to

trick users into believing their system is infected with malware or other security threats, in

order to convince them to pay for unnecessary or fake security software.

Scareware can be introduced to a system through a variety of methods, including pop-up ads,

phishing emails, or by exploiting vulnerabilities in software or operating systems. Once

installed, the scareware will often display a warning message or fake scan results, claiming

that the user's system is infected with viruses, spyware, or other security threats. The

scareware may then encourage the user to download or purchase a security software program

to fix the supposed problem. However, the security software is often fake or ineffective, and

may even install additional malware onto the user's system.

3. Malware Analysis

Analysing malware is an essential aspect of understanding how they operate. Without knowing

exact details on how attackers take control of a system, it is impossible to develop ways of

counteracting them. By analysing malware, security researchers can gain insights into how

attackers operate and develop effective methods of preventing and detecting attacks.

4. Portable Executable

The Portable Executable (PE) format describes the layout of files for executables and

dynamic-link libraries (DLL). It is used extensively within the Windows operating system and

extracting information from executables using this format is important to gain information about

malicious .exe files. The format can differ depending on if the file is an image (executable) or

an object (non-executable such as .dll). Some sections within the file may not be used

depending on this difference. For the purposes of this project, only images need to be

considered. The following figure shows an outline of the beginning of a PE file, and some

useful information that can be obtained.

Figure 3 Hex viewer of .exe file

9

PE Identifier: The first two bytes of the file indicate that the file is a Portable Executable, and

will always be 0x5a4d. This is used as an easy way to verify that the file can be read as

intended.

MS-DOS Offset: At position 0x3c in every PE file, 4 bytes are used to identify the address

where the MS-DOS stub ends. The stub is used to print a string if the file is run under DOS

mode, but can be used for other purposes. This makes the MS-DOS stub a varying length

size, and therefore the offset is used for programs to know where to begin reading values that

follow. In the figure above, this offset is set to 0x80, as it is read in little-endian order. Values

after this address have documented and fixed sizes.

File Version: The magic number determines whether an image is PE32 (32-bit, value of

0x010b) or PE32+ (64-bit, value of 0x020b). This can be assigned to a boolean as there are

no other values possible. The importance of knowing the version is described below.

4.1. File version

An image may be either PE32 (32-bit) or PE32+ (64-bit). Determining which version an

executable uses is the first step to reading the contents, as sections use different sizes of

bytes to store information. This allows PE32+ files to accommodate 8 byte values, or 64 bits

of information. There is a “quick and easy” way to determine if an executable is 32-bit or 64-

bit, which involves opening it in a text editor and finding a character following the string “PE”.

This method will work for most executables, however the documentation for the format uses

the magic number as described above.

Figure 4 Text views of .exe files

10

The values shown actually indicate the text representation of the byte values for the machine

type rather than the version, but are still used to quickly find the version as the other types are

not commonly used.

5. Java Native Interface

Java Native Interface (JNI) allows for foreign functions from other languages such as C and

C++ to be called and run within a Java program (Wikipedia, 2021). It is a supported interface

that comes with Java, and can be initialised with the “javac -h . FileName.java” command

when the Java Development Kit (JDK) is installed. This command will generate a .h header

file which allows the foreign language to be linked to the Java program.

Figure 5 Generated .h file

With this header file, C and C++ functions can be created to be called within Java. When the

functions are ready to be used, they must be compiled into a .dll file, which can then be

loaded into Java.

6. Virtual Memory

In windows, any running process is allocated a virtual memory space (Wikipedia, 2020). This

differs from a physical memory space in that not every section of the virtual memory needs to

be stored in RAM at any one time, but instead can transfer some sections onto the hard disk

if there is a shortage of RAM available. Doing this also allows for multiple processes to use

the same memory address to reference different data, as virtual memory addresses are

mapped to the physical addresses. This also serves as a security feature as processes cannot

reference the virtual memory of other processes without directly calling the space.

11

Figure 6 Mapping virtual memory to physical memory (Abraham Silberschatz, n.d.)

The virtual memory of a process can be used to analyse what a program is storing to be used

at any point, such as URLs, strings, directories, etc. For this reason, accessing the virtual

memory of a running process can be utilised to detect malicious actions by checking if

sensitive information is being processes. The windows.h API for c++ gives the required

functions for this to be possible. There are many challenges to be solved in order to be able

to access the virtual memory space of a separate process, relating to how virtual memory is

read, security features, PE version, etc.

6.1. Process Access Rights

To read and write into a virtual memory space, the process must have a sufficient access right

to do so (Microsoft, n.d.). Initialising the process with the correct access right is required to be

able to read the contents of the space. The figure below shows the different access rights that

can be used, with the access right PROCESS_ALL_ACCESS being used in the project to read

the entire space.

12

Figure 7 Process Access Rights (Microsoft, n.d.)

Figure 8 Opening process with access right

6.2. Page Protection

Once the process can be accessed, each section of virtual memory still needs to be read. The

pages are separated into regions with identical attributes, each with their own protection

13

labelled Memory Protection Constants in the documentation (Microsoft, n.d.). To read the

entire virtual memory space, each of these regions must be iterated through, changing the

protection of each as this is done. The protection constant PAGE_EXECUTE_READWRITE

is used for each to gain access to all pages. The starting address and the size of the region to

be changed must also be specified, and the protection will change for every section within that

region, for a total of startingAddress + RegionSize bytes changed.

Figure 9 Memory Protection Constants (Microsoft, n.d.)

Figure 10 Changing protection with protection constant

The function above may fail, and will return a value of 0 if it does. This will happen if a region

of memory has not been initialised, and must be skipped if so.

14

6.3. Memory Basic Information

The MEMORY_BASIC_INFORMATION (MBI) structure contains the information relating to a

range of pages within the virtual memory space of a process (Microsoft, n.d.). This information

contains the page protection mentioned above, along with the region size, base address, and

other values.

Figure 11 MEMORY_BASIC_INFORMATION structure (Microsoft, n.d.)

The structure must be updated for each iteration through the range of pages by referencing it

through querying, as mentioned below.

6.4. Querying

Once a section of data has the correct protection constant, the region can be queried

(Microsoft, n.d.). This involves loading the relevant data into the MBI address, updating the

region’s size to the new region’s attributes. An address is given to the function, which specifies

the starting address to begin the query. Querying will return a value of 0 if it fails, which will

happen if the end of the virtual memory space is reached, allowing for the function to be put

in a while loop to iterate through the entire space as shown in the figure below.

Figure 12 Query Function

6.5. Read Memory

After the previous steps have been completed, the memory can finally be read. Each readable

byte is placed into a character array that acts as a buffer for each region, then placed into a

vector that stores the entire memory space. When the iterations have completed, the vector

is converted to a JNI-friendly byte array to be passed back to the Java application. This byte

array is the complete readable virtual memory space of the targeted process.

15

Figure 13 Reading Process Memory

7. Dynamic Malware Analysis

When attempting to detect malware, there are two common approaches; static analysis and

dynamic analysis. Static analysis attempts to read the binary code of an executable in order

to detect a malicious program. Dynamic programming, on the other hand, will execute the

code and attempt to trace the actions of the program to determine if it is malicious. This method

does not rely on signature detecting, but can implement signature tracking to skip redundant

analysis.

Dynamic analysis can be a powerful tool in the fight against malware, as it allows analysts to

observe the behaviour of a program in real-time and to detect previously unknown or zero-day

malware. By monitoring the actions of a program during execution, analysts can identify

suspicious activity such as attempts to modify system files, network traffic to suspicious

domains, or unauthorised access to sensitive data.

In addition to detecting and analysing malware, dynamic analysis can also be used to develop

and test new security measures. By simulating a malware attack in a controlled environment,

analysts can evaluate the effectiveness of different security tools and techniques, and develop

strategies for mitigating and preventing future attacks.

While dynamic analysis can be a powerful tool, it is not without its challenges. One of the main

difficulties is that dynamic analysis can be time-consuming and resource-intensive, as it

requires running the malware in a controlled environment and carefully monitoring its

behaviour. Additionally, some malware may be designed to evade detection by detecting and

avoiding dynamic analysis environments.

Despite these challenges, dynamic analysis remains an important tool in the fight against

malware. By combining dynamic analysis with some elements of static analysis, analysts can

develop a comprehensive approach to malware detection and analysis that is capable of

detecting even the most sophisticated and elusive threats.

7.1. Analysis Techniques

Dynamic analysis relies on executing the code, then monitoring what the program does. There

are two primary ways of achieving this; function call monitoring and information flow tracking

(Aman, 2014).

16

7.1.1. Function call monitoring

As a program executes, it performs function calls. This is a section of reusable code that

makes certain actions easier. At times, it is required to use these calls to communicate with

the operating system. An analysis tool can use an operation called hooking to monitor these

system calls. This is achieved by injecting code into the monitored program that is activated

whenever a system call is triggered, allowing for the analysis tool to track which calls are

performed.

7.1.2. Information flow tracking

This method aims to follow how a program uses and manipulates certain data throughout the

system. The data that should be monitored is marked as tainted and allows the analysis tool

to see how it is altered throughout execution.

7.2. Evasion

Malware employs several techniques in an attempt to make itself obscure to analysis. One of

these techniques is to elevate its privileges to one that is above the tool being used (Or-Meir,

2019). The Intel processor uses a protection ring as seen in Figure 1, which states the

privileges a section of code is granted. It comprises 4 sections, with ring 3 containing

application code, and being the least privileged. Ring 3 and 2 are dedicated to device drivers,

and ring 0 is the kernel section. For a malicious application, gaining access to the kernel ring

means that it can run with very little restrictions. A common method of gaining access to the

kernel ring is to get the user to install an infected kernel driver, giving complete access to the

CPU and connected devices, such as a web camera. This can make it very difficult for an

analysis tool to detect the malware, as it is generally loaded in the applications ring.

Figure 14 Intel Protection Ring (Wikipedia, 2022)

If the malware cannot gain access to elevated privileges, it relies on code obfuscation to avoid

detection from an analysis tool. This attempts to hide its code and attack methods through a

17

variety of means. The primary way of doing this is to use polymorphism, which encrypts the

code and adds difficulty in reading and executing the code.

7.3. Analysis Environment

As dynamic analysis requires running the malicious code to see its actions, there would be an

extreme risk in performing analysis without taking precautions. The safest approach is to

initialise a contained environment, such as a virtual machine or a sandbox. To prevent the

malware from spreading through the network, internet access should also be limited. This

provides a safe environment to perform analysis as any damage caused by the malware will

only affect the contained environment, and not the host machine.

8. Existing Tools

8.1. Wireshark

Wireshark is a network analysis tool, which can be used in malware analysis. This tool allows

analysers to see what is getting sent over a network. If a malicious program is sending data

to a server from the machine, Wireshark can report this back to the user.

Using a Graphical User Interface (GUI), Wireshark shows a visual representation of the

network information, as seen in Fig.2. This data can then be used to inspect the transferred

packets and determine what is being sent to and from servers. The analysis tool could utilise

this program for scanning if a piece of sensitive data is being checked on by another computer.

18

Figure 15 Wireshark GUI

8.2. Regshot

Regshot is a tool which will take a snapshot of registry data, and compare it to a snapshot

taken at a later time. A comparison can be done to see which values were updated. Should

the malware update these registry values during its execution, this data can be utilised to gain

information on the actions it is taking.

8.3. EDB

Evan’s Debugger (EDB) is a tool that is used to extract the assembly code from a program

and read how it affects the stack values (Teran, n.d.). It is compatible with x86 instructions,

and serves as a debugger in the sense of executing each line of code line-by-line, and

updating values dynamically. This is an intended feature with the application of this project,

with additional features to determine if the lines of code are malicious.

19

Figure 16 Evan's Debugger (Teran, n.d.)

9. Libraries

9.1. Capstone

Capstone (Capstone, n.d.) is a widely-used disassembly tool that enables analysts to extract

the executable code from a binary file and to translate it into human-readable assembly

language. The tool is open source and offers bindings for a wide range of programming

languages, making it accessible to developers and analysts working in different environments.

Capstone supports a wide range of architectures, including x86, x86_64, ARM, MIPS,

PowerPC, and others, allowing it to be used to analyse a variety of binary files. For the

purposes of this project, the x86 and x86_64 instruction sets are specifically needed, as they

are commonly used in PE files.

The output of Capstone's disassembly process is a detailed analysis of the binary code,

including information about the instructions executed, the values of any registers used, and

the memory addresses accessed. This information can be used to gain insights into the

behaviour of a program, to identify specific vulnerabilities or malicious behaviour, and to

develop targeted countermeasures.

20

10. Operating System

For the purposes of the project, two Operating Systems (OS) were considered, which were

the Linux and Windows desktop operating systems. Other types of OS, such as Android and

iOS, were not chosen as their respective screening process would detect most forms of

malware. There are advantages to using both Operating Systems for the application.

10.1. Linux

With the open ended software commonly available on Linux, having a more in-depth control

of processes is very important to an analysis tool. This would give access to more data that

could be used to detect malicious code. This is also true for malware running on the platform,

with the potential of inserting malicious code in the source code for the OS itself (Sharma,

2021).

10.2. Windows

In a survey performed in 2020 (Petrosyan, 2020), over 80% of all malware attacks occur on

the Windows Operating System (OS). As Windows is the most commonly used desktop OS,

it provides a large group of users for attackers to target. While there are more users with a

mobile device than a desktop computer, both Apple and Android have a vetting process that

can prevent most forms of malware.

With this information, the operating system of choice for this project will be Windows, as cross-

platform compatibility is unlikely to be feasible in the given duration.

11. Conclusion

In conclusion, understanding how malware is distributed and the different ways it can affect a

system is essential in creating a program to analyse it. Research into malware can never be

considered complete as it is constantly changing and evolving, leading to an arms-race

between attackers and analysers. However, it is vital to keep up to date with advances in

vulnerability exploitation to invent ways of counteracting the exploits. The ambition with this

project is that more people become aware of these dangers, and gain the required knowledge

to be able to effectively defend themselves against the threats that come with moving into a

technology-focused world.

21

Bibliography

Abraham Silberschatz, G. G. a. P. B. G., n.d. Virtual Memory. [Online]

Available at:

https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/9_VirtualMemory.html

Akamai, n.d. What is Ransomware?. [Online]

Available at: https://www.akamai.com/our-thinking/cybersecurity/what-is-ransomware

Aman, W., 2014. [1410.2131] A Framework for Analysis and Comparison of Dynamic

Malware Analysis Tools. [Online]

Available at: https://arxiv.org/abs/1410.2131

[Accessed 18 November 2022].

Anon., n.d. Dynamic malware analysis in the modern era—A state of the art survey. Or-Meir,

O., Nissim, N., Elovici, Y. and Rokach, L., 2019. Dynamic malware analysis in the modern

era—A state of the art survey. ACM Computing Surveys (CSUR), 52(5), pp.1-48.: s.n.

Anon., n.d. Wireshark. [Online]

Available at: https://www.wireshark.org

Capstone, n.d. Capstone Dissasembly Tool. [Online]

Available at: https://www.capstone-engine.org

Microsoft, n.d. Memory Basic Information. [Online]

Available at: https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-

memory_basic_information

Microsoft, n.d. Memory Protection Constants. [Online]

Available at: https://learn.microsoft.com/en-us/windows/win32/memory/memory-protection-

constants

Microsoft, n.d. Process Security and Access Rights. [Online]

Available at: https://learn.microsoft.com/en-us/windows/win32/procthread/process-security-

and-access-rights

Microsoft, n.d. VirtualQueryEx function. [Online]

Available at: https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-

virtualqueryex

Or-Meir, O. N. N. E. Y. a. R., 2019. Dynamic malware analysis in the modern era—A state of

the art survey. s.l.:ACM Computing Surveys.

Petrosyan, A., 2020. Operating systems most affected by malware as of 1st quarter 2020.

[Online]

Available at: https://www.statista.com/statistics/680943/malware-os-distribution/

22

Sharma, A., 2021. Bleeping Computer. [Online]

Available at: https://www.bleepingcomputer.com/news/security/linux-bans-university-of-

minnesota-for-committing-malicious-code/

Teran, E., n.d. EDB Debugger. [Online]

Available at: https://github.com/eteran/edb-debugger

Wikipedia, 2020. Virtual Memory. [Online]

Available at: https://en.wikipedia.org/wiki/Virtual_memory

Wikipedia, 2021. Java Native Interface. [Online]

Available at: https://en.wikipedia.org/wiki/Java_Native_Interface

Wikipedia, 2022. Intel Protection Rings. [Online]

Available at: https://en.wikipedia.org/wiki/Protection_ring

Wikipedia, 2023. WannaCry ransomware attack. [Online]

Available at: https://en.wikipedia.org/wiki/WannaCry_ransomware_attack

Additional Materials

Aslan, Ö.A. and Samet, R., 2020. A comprehensive review on malware detection

approaches. IEEE Access, 8, pp.6249-6271.

Souri, A. and Hosseini, R., 2018. A state-of-the-art survey of malware detection approaches

using data mining techniques. Human-centric Computing and Information Sciences, 8(1),

pp.1-22.

Aslan, Ö. and Samet, R., 2017, October. Investigation of possibilities to detect malware

using existing tools. In 2017 IEEE/ACS 14th International Conference on Computer Systems

and Applications (AICCSA) (pp. 1277-1284). IEEE.

Neugschwandtner, M., Platzer, C., Comparetti, P.M. and Bayer, U., 2010, July. Danubis–

dynamic device driver analysis based on virtual machine introspection. In International

Conference on Detection of Intrusions and Malware, and Vulnerability Assessment (pp. 41-

60). Springer, Berlin, Heidelberg.

