
BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page i of 72

BENCHMARKING PRE/POST-QUANTUM

CRYPTOGRAPHY

BY

Cavan Phelan

C00249198

17 April 2023

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page ii of 72

Contents
1. Introduction .. 1

2. Benchmarking Goals .. 1

3. Classic Algorithm Security ... 2

3.1. Integer factorization .. 2

3.2. Discrete logarithm ... 2

3.3. Elliptic-curve discrete logarithm ... 2

3.4. What puts these popular algorithms at risk? ... 2

Types of classic algorithms .. 3

3.5. Hashing Functions ... 3

3.6. Asymmetric-Key Algorithms .. 3

3.6.1. How do you generate a key pair? ... 4

3.6.2. What are Elliptic Curves? .. 4

3.7. Symmetric-Key Algorithms .. 5

3.7.1. Elliptic Curve Diffie-Hellman Key Exchange ... 5

3.7.2. Diffie-Hellman Key Exchange .. 6

4. Classic Cryptography ... 7

4.1. Advanced Encryption Standard (AES) ... 7

4.1.1. SubBytes .. 8

4.1.2. ShiftRows ... 8

4.1.3. MixColumns .. 9

4.1.4. AddRoundKey ... 9

4.1.5. Can we make AES more efficient? .. 10

4.1.6. How does Counter Mode work? .. 11

4.2. Rivest–Shamir–Adleman (RSA) ... 12

4.2.1. RSA Key Pair Generation .. 12

4.2.2. RSA Encryption ... 13

4.2.3. RSA Decryption ... 13

4.2.4. RSA Signatures .. 13

4.3. Sha-256 (Secure Hashing Algorithm) ... 13

4.3.1. Pre-Processing.. 14

4.3.2. Initialize Hash Values (h) .. 14

4.3.3. Initialize Round Constants (k) ... 15

4.3.4. Create Message Schedule .. 15

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page iii of 72

4.3.5. Compression .. 17

4.3.6. Modify Final Values .. 18

4.3.7. Concatenate Final Hash ... 19

4.4. SHA-3.. 19

4.4.1. Sponge Function .. 19

4.4.2. SHA-3 Hashing .. 20

5. TwoFish .. 26

5.4.1. TwoFish Key Generation ... 26

5.4.2. TwoFish Encryption... 28

5.4.3. TwoFish Decryption .. 29

6. What are quantum algorithms? ... 30

6.5. How does Shor’s algorithm work? .. 30

6.5.1. Finding Factors of N .. 31

6.5.2. What can we do with this? ... 32

6.5.3. Where are the Quantum aspects? ... 32

7. Post-Quantum Cryptography .. 33

7.6. Definitions ... 33

7.7. Lattice-Based Cryptography ... 33

7.7.1. What is a lattice? .. 34

7.7.2. What is a basis of a lattice? .. 34

7.7.3. How is a basis calculated? ... 34

7.7.4. Lattice-based problems .. 35

7.7.5. The Learning With Errors Problem ... 35

7.7.6. The Ring Learning With Errors Problem... 35

7.7.7. The Learning With Errors Over Module Lattices .. 36

7.7.8. The Short Integer Solution Problem .. 36

7.7.9. The Module Short Integer Solution Problem ... 36

7.7.10. Lattice-based Cryptography Conclusion .. 36

7.8. Multivariate Quadratic Cryptography ... 37

7.8.1. What is a multivariate quadratic equation? .. 37

7.8.2. What makes multivariate quadratic equations over finite fields difficult? 37

7.8.3. The Unbalanced Oil and Vinegar (UOV) scheme. .. 37

7.9. Code-Based Cryptography .. 38

7.9.1. The Decoding Problem .. 38

7.9.2. Quasi-Cyclic Moderate-Density Parity-Check (QC-MDPC) 38

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page iv of 72

7.9.3. What makes QC-MDPC hard to solve? ... 39

7.10. Hash-Based Cryptography ... 40

7.11. Non-Interactive Zero-Knowledge Proofs (NIZPKs) ... 40

7.11.1. What is a Zero-Knowledge Proof? ... 40

7.11.2. What is a Non-Interactive Zero-Knowledge Proof? 41

7.11.3. How does the process change from a ZKP to a NIZKP? 41

7.12. CRYSTALS-Kyber ... 41

7.12.1. Key Generation .. 41

7.12.2. Encapsulation ... 42

7.12.3. Decapsulation ... 43

7.12.4. Advantages of Kyber .. 43

7.12.5. Disadvantages of Kyber ... 44

7.12.6. Key Terms .. 44

7.13. CRYSTALS-Dilithium .. 46

7.13.1. Key Generation .. 46

7.13.2. Signing ... 47

7.13.3. Verification... 48

7.13.4. Advantages of Dilithium .. 48

7.13.5. Disadvantages of Dilithium .. 48

7.13.6. Key Terms .. 49

7.14. PICNIC .. 49

7.14.1. Key Generation .. 49

7.14.2. Signing ... 50

7.14.3. Verification... 51

7.14.4. Advantages of PICNIC... 52

7.14.5. Disadvantages of PICNIC .. 52

7.14.6. Key Terms .. 52

7.15. Falcon .. 53

7.15.1. Key Generation .. 53

7.15.2. Signing ... 53

7.15.3. Verification... 54

7.15.4. Advantages of Falcon ... 54

7.15.5. Disadvantages of Falcon .. 55

7.15.6. Key Terms .. 55

7.16. BIKE .. 55

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page v of 72

7.16.1. Key Generation .. 55

7.16.2. Encapsulation ... 56

7.16.3. Decapsulation ... 57

7.16.4. Advantages of BIKE .. 57

7.16.5. Disadvantages of BIKE .. 58

7.16.6. Key Terms .. 58

7.17. Rainbow ... 58

7.17.1. Key Generation .. 58

7.17.2. Signing ... 59

7.17.3. Verification... 59

7.17.4. Advantages of Rainbow ... 60

7.17.5. Disadvantages of Rainbow ... 60

7.17.6. Key Terms .. 60

7.18. Sphincs+ .. 61

7.18.1. Key Generation .. 61

7.18.2. Signing ... 62

7.18.3. Verification... 63

7.18.4. Advantages of SPHINCS+ ... 63

7.18.5. Disadvantages of SPHINCS+ .. 63

7.18.6. Key Terms .. 64

8. Conclusion .. 65

9. Bibliography ... 66

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 1 of 72

1. Introduction
Cryptography has been around longer than we could imagine. It is believed to be used as far

back as 100 BC (Sidhpurwala, 2023). Julius Caesar used the Caesar Cipher to communicate

with his commanders in war. This cipher used the alphabet and shifted the characters by an

amount only his commanders knew. Cryptographic algorithms have changed in complexity

and methods since then with the advancement of technology. Despite this, the main goal of

cryptography then and now is somewhat the same which is to communicate and exchange

information securely without the interference of third parties.

We are at the stage where we are about to enter a new age of cryptography, with the main

cause being quantum computers. Quantum computing is highly anticipated to break many

encryption algorithms such as AES, RSA and 3DES. Any algorithm that relies on computer

mathematical problems will such as the integer factorization problem, discrete logarithms

problem and elliptic curve discrete logarithm problem are quantum unsafe, all of which will

be explained later. Post-Quantum algorithms also rely on some computational problems, but

these cannot be solved efficiently on classic and quantum computers.

2. Benchmarking Goals
There is a selection of categories I wish to benchmark to get a good representation of whether

post-quantum algorithms are ready for use now, and if so, determine if they are more reliable

and dependant than classic algorithms.

Performance – Benchmarking the amount of time taken to perform certain tasks such as

encryption, decryption, signing and verifying signatures. A benchmark of the average time of

these after a certain number of runs would help me determine a good baseline.

Security – Benchmark and analyse the output of the algorithms, whether it’s with key sizes,

plaintext and ciphertext lengths and signature lengths. Getting a good idea of the size of these

would help determine the storage needs of each.

Parameters – The number of customizable parameters to change the level of security and

performance of the algorithms. These benchmarks would help see the impact of different key

sizes and how they affect each algorithm.

These main parameters would help build a baseline of what is considered fast and compact in

terms of both classical and quantum-resistant algorithms and see if the increase in

computation need, and storage is worth the trade-off.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 2 of 72

3. Classic Algorithm Security
Algorithms such as AES, RSA and Diffie-Hellman all rely on three mathematical problems to

maintain security. These problems are (3.1.1) integer factorization problem, (3.1.2)

discrete logarithm problem and (3.1.3) elliptic-curve discrete logarithm problem.

3.1. Integer factorization
This is determining which prime numbers divide a given positive integer. The bigger the size

of the number, the more resources are needed to factorize it (OBE, 2018). It is currently very

hard and expensive for a computer to factorize large semiprimes (Product of only two prime

numbers), or any integer that has no small factors.

To put this into perspective, in 2020, RSA-250 which has 250 decimal digits (829 bits) was

factored. Even with today’s technology, this took around 2700 CPU core years to do. RSA-

260 has not been factored in, showing that even a small increase in decimal digits means a lot

more computer resources (Schneier, 2020).

3.2. Discrete logarithm
This uses modular arithmetic as it is a numerical procedure that is easy in one direction but

hard in the other. If we take a prime number p, and we take x to be a primitive root of p, we

can use x mod p to return a value. For example, if we use 3¹ mod 17, we get 3. 3¹⁶ mod 17 =

1. If we take the prime number (p-1) and take one away from it, that is how many results we

can produce. If we mod the value 3 by 17, then we can have results from 1-16. If we used a

prime of 77, we could get a value from 1-76. All these numbers, from 1-76 all have an equal

chance of being the correct answer, making it hard to just guess which might be correct.

This is easy to solve on small numbers but if we receive 3ⁿ mod 7757 = 3552, how do we

calculate n? We would have to brute force the value of n from 1-7756 until we find the

correct value of n, so the equation equals our result. This is expensive to do on a computer.

As mentioned above this took 2700-core years to brute force this on modern technology on a

250 decimal digit (Vacca, 2014).

3.3. Elliptic-curve discrete logarithm
This problem is considered very computationally hard to solve. A general algorithm for

computing logb a in finite groups G is to raise b to larger and larger powers k until the desired

a is found. (“Discrete logarithm - Wikipedia”) This is also called triple multiplying, as you

must keep adding and multiplying b to find the correct point, a, in the finite field. It requires

running time linear (The more operations the harder it is to solve) in the size of the group G

and thus exponential in the number of digits in the size of the group. It is an exponential-time

algorithm (Running time grows as an exponential function of the size of its input). This

becomes a problem when using more and larger numbers, according to the exponential-time

algorithm mentioned before.

3.4. What puts these popular algorithms at risk?
Due to the above algorithms relying on the three mathematical problems, if these can be

efficiently calculated then they are no longer secure. Shor’s algorithm, which when run on a

quantum computer can efficiently solve all these issues. The algorithm can find the prime

factors of an integer. This has existed since 1994, but we lack the computational power to run

it. This algorithm will be explained further in the document.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 3 of 72

Types of classic algorithms

3.5. Hashing Functions
A hash function is used to map data of arbitrary to data of a fixed size. For example, if I

hashed the word “hello” using SHA-256, the hash length will always be 256-bit. A hash is

one-way and cannot be decrypted to the original state. Hashes must maintain two security

guarantees to uphold its security, which is as follows.

a) Collision resistant – This is a security guarantee that it’s hard to find two messages

that hash to the same value. Collisions are however inevitable due to the Pigeonhole

principle. The Pigeonhole principle states that if you have m holes, and n pigeons if n

is greater than m, at-least one hole must contain multiple pigeons.

b) Preimage Resistance – This is the security guarantee that given a hash value, an

attacker will never find a preimage (Original value) of that hash value. Preimage

resistance breaks into two sections:

1. First-preimage resistance describes that given the hash value, it is practically

impossible to find a message m that hashes to hash H.

2. Second-preimage resistance describes that given a message m1, it’s impossible to find

another message m2 that hashes to the same value m1 does.#

3.6. Asymmetric-Key Algorithms
Asymmetric-key algorithms are also known as public-key systems. These systems generate a

key pair. Each key pair consists of a public key and a private key. As suggested, the public

key can be public and given to anyone who wishes to message you. However, only I can

decrypt that encrypted message using my secret private key.

Figure 1: Basic Public-key algorithm

These Asymmetric-Key algorithms can usually also be used to create digital signatures. You

can create a digital signature using your secret private key. Anyone can verify the signature

using the sender's public key. Digital signatures provide authentication (the sender is

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 4 of 72

verified), integrity (the message hasn't been tampered with), and non-repudiation (the sender

cannot deny sending the message).

Figure 2: Digital Signature Example

3.6.1. How do you generate a key pair?
There are many different methods based on what algorithms you want to use and how you

want to use them. Elliptic Curve Digital Signature Algorithm is one of the most efficient

methods of generating a keypair and is used later in classical algorithms and even quantum.

We first choose an elliptic curve and a set of domain parameters that define the

characteristics of the curve, such as the size of the key, the prime modulus, and the base

point. Examples of commonly used elliptic curves include secp256k1 and secp384r1. We

then choose a random number (the private key) that is within the range [1, n-1], where n is

the order of the elliptic curve. After that, we multiply the base point of the elliptic curve by

the private key using scalar multiplication to obtain the public key. The resulting point on the

curve is the public key. Once done, we usually encode the key using the X.509 format.

3.6.2. What are Elliptic Curves?
Elliptic curves are a type of mathematical curve in the equation form y^2 = x^3 + ax + b.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 5 of 72

Figure 3: Elliptic Curve Example

where a and b are constants, and x and y are variables that satisfy the equation. The curve is

defined over a finite field, which means that only a finite number of points on the curve have

coordinated with values in the field. Elliptic curves have the property that it is

computationally difficult to find the discrete logarithm of a point on the curve.

3.7. Symmetric-Key Algorithms
This is like Asymmetric-Key algorithms except we use the same key for both encryption and

decryption. This means that encryption and decryption are very fast, but one of the main

challenges of this is to securely communicate a common shared secret to communicate. If this

secret key is exposed, communication is compromised. To combat this, we can use a Key-

Exchange Scheme such as Elliptic Curve Diffie-Hellman Key Exchange (ECDH).

3.7.1. Elliptic Curve Diffie-Hellman Key Exchange
ECDH is a key agreement protocol that allows two parties to securely establish a shared

secret key over an insecure channel without transmitting the key itself., it’s based on the

original Diffie-Hellman protocol. ECDH relies on the mathematical properties of modular

exponentiation (an operation that involves raising a number to a power and taking the

remainder of the result when divided by a specified modulus) to establish the shared secret

key. ECDH uses points on an elliptic curve over a finite field.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 6 of 72

The basic steps are as follows: 1. Each party generates their public-private key pair,

consisting of a private key and a corresponding public key. 2. The parties exchange their

public keys over the insecure channel. 3. Each party uses their own ate key and the other

party's public key to compute a shared secret key. This is done by multiplying the other

party's public key by their privkey, which results in a shared point on the elliptic curve. 4.

The parties can use the shared point to derive a shared secret key that can be used for

symmetric-key encryption.

3.7.2. Diffie-Hellman Key Exchange
This works somewhat the same as the newer ECDH but uses integers rather than elliptic

curves, is less efficient and has bigger key sizes.

Figure 4: Diffie-Hellman Key Exchange

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 7 of 72

4. Classic Cryptography

4.1. Advanced Encryption Standard (AES)
Advanced Encryption Standard (AES), also known as Rijndael, is a variant of a block cipher.

(“Advanced Encryption Standard (AES) in Counter Mode”) Block ciphers take in a data

‘block’ and processes them. These blocks are 128 bits in length. We can vary our key sizes,

which changes how many rounds AES goes through:

• 10 rounds for 128-bit keys.

• 12 rounds for 192-bit keys.

• 14 rounds for 256-bit keys.

AES is a symmetric-key algorithm, meaning that the same key is used for encrypting and

decrypting data. AES is based on a design principle called the ‘Substitution-permutation

network (SPN)’. This is a series of mathematical operations used in block ciphers. The

plaintext and key will be applied through several rounds of (a) substitution boxes (S-boxes)

and (b) permutation boxes (P-boxes):

a) An S-box substitutes a small block of bits (input) with another block of bits (output).

This substitution is one-to-one to allow for decryption. The length of the output should

be the same as the input. An S-box should have the property that changing one bit will

change about half the output (Avalanche effect).

Figure 5: S-box example

Given a 6-bit input, the 4-bit output is found by selecting the row using the outer two

bits, and the column using the inner four bits. For example, an input ‘011011’ has the

outer bits ‘01’ and the inner bits ‘1101’. The corresponding output would be ‘1001’.

b) A P-box is a permutation (Different combination) of all the bits. It takes the output of

the S-boxes of one round, permutes the bits, and feeds them into S-boxes in the next

round. (“The exact difference between a permutation and a substitution”) P-boxes

should have the property that the output bits of any S-box are distributed to as many S-

box inputs as possible.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 8 of 72

Figure 6: P-box example

At each round, the round key (Obtained by putting the key through S-boxes and P-boxes) is

combined using some group operation, usually XOR, which is multiplying 0s and 1s together.

AES operates on a 4x4 column-major order array (Method of storing multidimensional arrays

in storage like ram) of 16 bytes, from which is known as the ‘state’.

Figure 7: 4x4 column-major order array

Each round goes through multiple processing steps, including the encryption key also. This is

done in reverse to decrypt the ciphertext. The processing steps are the following:

4.1.1. SubBytes
In this step, in the state array is replaced with a SubByte using an 8-bit

substitution box. The initial round uses the input as the state array to provide non-linearity.

Figure 8: SubBytes step

4.1.2. ShiftRows
This step operates in the rows of the state. It shifts the rows by a certain offset. The first row

is left unchanged. Each byte of the second row is shifted by one to the left. (“Advanced

Encryption Standard - Wikipedia”) The third row is shifted by two to the left and the last row

is shifted by three. This step avoids the columns being encrypted independently.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 9 of 72

Figure 9: ShiftRows step

4.1.3. MixColumns
The four bytes from each column of the state are combined using a linear transformation.

This function takes four bytes as input and outputs four bytes, where each input byes affects

all four output bytes. Together with the previous two steps, this creates diffusion (Changing

one bit, changes about half of the bits in the ciphertext) which hides statistical relationships

between the ciphertext and plaintext.

During this operation, each column is left multiplied using a fixed matrix to give a new value

of a column in the state.

Figure 10: Columns being left multiplied using a fixed matrix.

4.1.4. AddRoundKey
 The subkey is combined with the state. For each round, a subkey is created from the main

key using a key schedule. Each subkey is the same size as the state. The subkey is added by

combining each byte of the state with the corresponding byte of the subkey using XOR.

(“Advanced Encryption Standard - Wikipedia”) (“Advanced Encryption Standard -

Wikipedia”)

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 10 of 72

Not all rounds include all the steps and are as follows.

a) The first round of AES is the Key Expansion round, where round keys are created by

AES.

b) The second round only uses the AddRoundKey which produces the first bit of

ciphertext to get started.

c) All the remaining rounds, except the very last use all the steps mentioned above.

d) In the last round, MixColumns is not included, as it does not make a difference.

4.1.5. Can we make AES more efficient?
It is possible to make AES faster and more efficient, and this is by choosing our mode of

operation. We have two types of ciphers, (a) block ciphers and (b) stream ciphers.

a) A block cipher is a method of encrypting data in a block to produce ciphertext using

a key and algorithm. (“Security Definitions from TechTarget”) These block sizes are

fixed size, usually 128 bits. (REF)

b) A stream cipher is a method of encrypting data bit by bit, which is faster than in

blocks. (REF)

These modes of operation change the encryption process but do not change the rounds AES

has. The most widely used mode of operation is the Counter (CTR) mode, which is the fastest

mode. It turns a block cipher into a stream cipher by encrypting byte by byte rather than in

blocks (Mustafeez, 2015).

Figure 11: AddRoundKey example

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 11 of 72

Figure 12: Counter Mode Encryption

To decrypt this, rather than XOR with the plaintext after the AES encryption, you XOR with

the ciphertext to produce the plaintext.

Figure 13: Counter mode Decryption

4.1.6. How does Counter Mode work?
Rather than using an initialisation vector (IV), which is a pseudorandom string of numbers,

we can use a nonce (One-time, unpredictable value) and combine it with a counter to create a

random input every time. This counter can be random, but it is popular to increment it if the

nonce is random. The nonce and counter go through the block cipher encryption with the key

and produce an output that is XOR’d with the plaintext to create the corresponding

ciphertext.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 12 of 72

4.2. Rivest–Shamir–Adleman (RSA)
RSA is a public-key cryptosystem. Public-Key cryptography uses a public key with a

corresponding private key, otherwise known as a key pair. These keys are generated using

mathematical problems called one-way functions, or trapdoors (Easy to compute but hard to

reverse). In this system, anyone with a public key can encrypt a message, but only those who

know the corresponding private key may decrypt the message. (“Public-key cryptography -

Wikiwand”)

4.2.1. RSA Key Pair Generation
1. I must choose two random large prime numbers, p, and q. These values must be kept

secret.

2. Multiply your two prime numbers together to calculate n, n = pq. This is the modulus

for the key pairs.

3. We use Carmichael’s totient function, denoted as λ, to calculate λ(n). The purpose is

to find the smallest positive divisor of Euler’s totient function. Euler’s totient function

counts the number of positive integers less than n but that are also coprime ton. The

formula to calculate this is: λ(n) = lcm(p-1)(q-1). LCM is the lowest common

multiple, which is calculated from Carmichael’s totient function. λ(n) is kept secret.

4. Choose a new integer e. This integer meets the specific requirements as follows: 1 < e

< λ(n). This means the number must be between 1 and λ(n). It also must be

coprime with n and λ(n). Integer e is released with the public key.

5. Determine d as de(mod(λn)) = 1. This is a secret as it’s used in the private key.

Figure 14: Key-pair generation example

Now that we have determined the values of our key pairs, we can begin to encrypt or

decrypt messages (Java T Point, n.d.).

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 13 of 72

4.2.2. RSA Encryption
Encrypting a message is very quick and easier, especially compared to generating the key

pair. For this example, I will use the alphabet as a guideline to convert characters to numbers.

I want to send the message ‘rot’, which is converted into 12,5,4. I will reuse the keypair

example from the previous section in the example (5, 14). To convert this to ciphertext I need

to raise each number to the power of the first number in our keypair (5) and modulo by the

second (14). L would be 125 (mod 14) = 10, E would be 55 (mod 14) = 3 and D would be 45

(mod 14) = 2. Our ciphertext would be 10,3,2, which converts back to JCB.

4.2.3. RSA Decryption
Decrypting a message is very similar to encrypting it. We will use the example from

encrypting to decrypt. We will take our private key-pair (11, 14) and use it on the ciphertext,

which is 10,3,2. We use the same formula as encrypting to decrypt. 1011 mod (14) = 12, 311

(mod 14) = 5, 211 (mod 14) = 4. If we convert 12,5,4 then we get an LED confirming we have

successfully decrypted the message.

4.2.4. RSA Signatures
Let’s say Alice wants to send an encrypted message to Bob. How can Bob be sure it is Alice?

This information isn’t included in the transportation of the message so Alice could be anyone,

someone could pose to be Alice in the future, how do we prevent this?

With signatures, we can sign the message to prove our identity. Alice can produce a hash

value of the message and raises it to the power of d, which is part of her private key as

mentioned previously. She attached the signature to the message, the hash. When Bob

received the message, he uses the same hash algorithm in conjunction with Alice’s public

key. He raises the signature to the power e, part of Alice’s public key and compares the hash

value to that of what he received. If the hash results match, Alice has verified her identity

which means she had access to her private key. This also proves that the message has not

been tampered with since being sent. Hashing with be explained further during a different

algorithm (Geeksforgeeks, 2021).

4.3. Sha-256 (Secure Hashing Algorithm)
As mentioned earlier, hashing takes data of arbitrary size and maps it to data of a fixed size.

Figure 15: Basic hash algorithm

SHA-256 consists of seven steps to generate the final hash output and they are.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 14 of 72

4.3.1. Pre-Processing
We first need to take our message and convert it into binary. For this example, I will convert

‘Cavan’. Each letter is 8-bits long.

Figure 16: 'Cavan' converted to binary.

Once this is done, the next step is to append a single ‘1’ to the end of the message.

Figure 17: A single '1' appended to the message.

We now pad the message with 0’s, until the message is a multiple of 512 (512 in this case).

We still must make sure to leave the last 64 bits free for now so we would only pad 407 bits.

For the remaining 64 bits, we represent the length of our message here. Our message was 40

bits long, we store this as a big-endian integer (EXPLAIN), which is ‘101000’. With that

done our message should now look like this:

Figure 18: Message block after step 1.

The digits in green are our original message, the one bit in blue represents the single ‘1’ we

append at the end of our message and the red is for the length in bits, of our message.

4.3.2. Initialize Hash Values (h)
We need to create eight hash values; we use the first eight prime numbers as a reference and

assign them to a hash (H). What we need to do is get the root of these prime numbers. We

then take the first 32 bits of the fractional part, multiply that by 232 and convert from decimal

to hex to get our result for the hash.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 15 of 72

Figure 19: Calculating H0

Once we power the root of 2 by 232, we are no longer interested in the fraction part rather we

want the whole number now. If we convert this decimal into hexadecimal, we will get

6a09E667, which is now the value of H0. The result from the second prime number would be

H1 and so on.

4.3.3. Initialize Round Constants (k)
Creating round constants is the same process as above, except these are done with the first 64

prime numbers and assigned to k0 up to k63.

4.3.4. Create a Message Schedule
We take the message block we currently have and reorganise it in a way that each entry is

now a 32-bit word.

Figure 20: Message Block in 32-bit words

W0 up to W15 is filled with our original message block, but it doesn’t end here. It goes all the

way up to W63 but is not shown above as everything after W15 is only filled with 0s.

We now run a loop starting at W16 and ending at W63 and it does a sequence of calculations to

start filling these empty blocks. We will do W16 as an example.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 16 of 72

Figure 21: Example of how SHA-256 calculates W16.

Once complete, this moves to W17 and increments W0 -> W1, W9 -> W10, W1 -> W2, W14

-> W15.

Once complete this is what the message schedule looks like:

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 17 of 72

We can still see our original message, the appended ‘1’ and the message length in the blocks.

The difference this time around is that w16 ... w63 has been padded with information based on

the calculations before.

4.3.5. Compression
We need to initialize variables a,b,c,d,e,f,g, and h and set them equal to the hash values

respectfully from before.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 18 of 72

Figure 22: Calculation steps

These steps again are repeated until k0 and w0 are both k63 and w63. Once the final

compression is done, we can look to add the working variables to the current hash values to

get our final output.

4.3.6. Modify Final Values
After the compression is done, we can modify the hash values as follows:

Figure 23: Modifying hash values.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 19 of 72

4.3.7. Concatenate Final Hash

Figure 24: Calculating Hashes and combining them to make output.

Now that we have the final hash, we are done with the process. All steps were recreated using

the SHA256 algorithm site (Martin, 2022).

4.4. SHA-3
As suggested by its name, SHA-3 is the successor to SHA-2. However, unlike SHA-2, SHA-

3 uses a technique known as Sponge construction. It is important to understand how the

sponge’s function works. Below is an image of the process followed by the steps used in

SHA-3 (Jon, 2021).

4.4.1. Sponge Function

Figure 25: SHA-3 sponge function.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 20 of 72

1. Split the plaintext data unto r-bit sized blocks, which with SHA3 is the rate +

capacity bits sum up to 1600 bits.

2. The first input rate and capacity are zeros and XORed with the first-rate block r1.

3. The combined rate and capacity block is put through a function of multiple

rounds.

4. The first r-bit of the function is the rate and reaming c-bit capacity.

5. The above r-bits are XORed with r2 and fed into another function.

6. This is done until no data blocks are left over.

7. On the last data block, the task is taken from the r-bits output of the function.

8. If more bits are needed, the rate and capacity are fed through the function without

any more data.

Now that we understand how a basic sponge function works, we can begin to explain the

SHA-3 hashing process.

4.4.2. SHA-3 Hashing
1. Padding – SHA-3 requires an equal number of perfect blocks to work, so it must pad

the input to be perfectly divisible by r-bits. This is done by adding a 1 bit then filling

in with zeros and ending again with a 1 bit.

Figure 26: SHA-3 padding.

NIST has published a table of the four SHA-3 function standards, where we can see

the values for rate r and capacity c.

Figure 27: NIST SHA-3 standard table

2. Block Transformation – The block transformation, which in the above sponge

construction is labelled ‘Function’ is broken up into five steps done over several

rounds. The state can be considered a 5 x 5 x w array of bits. The five steps are θ

(theta), ρ (rho), π (pi), χ (chi) and ι (iota). These steps will be completed twenty-four

times, which is the number of rounds SHA-3 uses.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 21 of 72

3. Step One: The θ (theta) Step

The θ step consists of two separate functions, the C function, and the D function.

Figure 29: SHA-3 D Function

1. Calculate the column parities (C) – For each of the five columns in the state array,

XOR all the bits in the same column across all rows to obtain a parity bit. Parity

meaning is the property of the value is even or odd, this helps determine if the level of

diffusion is sufficient. This results in a 1x5 array of parity bits denoted as C[0], C[1],

C[2], C[3], C[4].

2. XOR neighbouring parties to create the D array. For each column, I, XOR is the

parity of the adjacent columns. This generates a new 1x5 array Dm where D[i] = C[(i

– 1) mod 5] ⊕ C[(i + 1) mod 5].

3. Update the state array. XOR each bit in the state array with the corresponding bit in

the new 1x5 array D.

The theta step ensures a high level of diffusion, making it hard for an attacker to find patterns

or relationships.

Figure 28: SHA-3 C function.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 22 of 72

Step Two: The ρ (rho) Step

Figure 30:SHA-3 rho function.

1. For each lane (i, j) in the state array, rotate the bits of the lane by a fixed

predetermined offset (r[i[[j]). This offset is determined by the following rules.

a. For the lane at position (0, 0), the offset is 0.

b. For the lane at position (i, j), the offset is determined by the formula: r[i][j] = (I * (I

+ 1) // 2) + (j*(2 * I + 3 * j) // 2) mod w (lane size).

The lane size, w, depends on the hash lengths. W = 64 for SHA3-224, w = 32 for

SHA3-384 and w = 16 for SHA3-512.

By rotating bits in each lane by these offsets, the Rho step provides additional diffusion

within the state array making it more difficult for an attacker.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 23 of 72

Step Three: The π (pi) step

Figure 31: SHA-3 pi function.

1. For each lane (x, y) in the state array, move the lane to a new position (x’, y’)

according to the following rules:

(a) x’ = y

(b) y’ = (2 * x + 3 * y) modulo 5.

The new position (x’, y’) for a lane (x, y) is determined by swapping the x and y

coordinates and applying a modular operation with the factor 5.

2. Update the state array with the new positions of the lanes.

By rearranging the lanes within the state array, the Pi step provides additional diffusion

across the entire array.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 24 of 72

Step Four: The χ (chi) Step

Figure 32: SHA-3 chi step

1. For each row in the state array, apply the following non-linear function on the lanes:

A’[x,y] = A[x,y] ⊕ ((¬A[(x+1)%5,y]) ∧ A[(x+2) % 5,y])

A[x,y] represents the original lane at position (x,y). A’[x,y] represents the updated

lane value. ⊕ denotes the XOR operation, ¬ denotes the bitwise NOT operator and ∧

denotes the bitwise AND operator.

2. Update the state array with the new lane values.

The chi step adds non-linearity into the state array, which is essential for the hash functions’

security, making it difficult for attackers to find patterns or relationships.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 25 of 72

Step Five: The ι (iota) Step

Figure 33: SHA-3 iota function

Figure 34: SHA-3 Iota function 2

1. XOR the lane position (0,0) in the state array with a round constant (RC). The round

constant is different for each round and is derived from a predefined set of constants.

2. Update the state array with the modified lane value.

The round constants are generated using a linear feedback shift register (LFSR) and are

designed to introduce diffusion.

Figure 35: Round Constants for Iota step

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 26 of 72

5. TwoFish
TwoFish is a symmetric key block cipher with a block size of 128 bits and a key size of up to

256 bits. (“Twofish - Wikipedia”) TwoFish is known for its distinctive features such as key-

dependant S-boxes and a complex key schedule. TwoFish uses a key block structure called

the Feistel Scheme, which includes splitting the plaintext into two blocks and running them

through different function rounds and then finally XORing them and swapping the two halves

to get your ciphertext/

Below is an image of the TwoFish Feistel scheme (Khan, n.d.).

5.4.1. TwoFish Key Generation
Like AES, TwoFish also uses an S-box, but with a twist.

1. S-Boxes - The S-box is a key-dependent S-box, meaning each S-box is defined

with 2-4 bytes of key material depending on the key size. This adds extra security

to the S-box as it can be of different sizes. An example of the TwoFish 128-bit

key is shown below:

Figure 36: TwoFish 128-bit S-Box

Where are key bytes derived from the key bytes? Even with equal key

bytes, the S-boxes will still differ from one another.

2. Maximum Distance Separable (MDS) - Once the output of the S-boxes is

computed, they are multiplied by the MDS matrix. The MDS matrix is always the

following:

The MDS must have the following properties:

1. Maximum Distance – It maintains the maximum possible Hamming distance

between the input and output pairs, meaning that on average, half of the output

buts change if a single bit is changed, increasing its complexity.

Figure 37: MDS matrix

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 27 of 72

2. Invertibility – The MDS matrix is invertible, which is important to decrypt.

The inverse matrix is used in decryption to reverse the diffusion effect.

3. Key Expansion – Key expansion is the process of deriving a set of round keys

from the initial encryption key. These rounds will be used later in encryption

and decryption. TwoFish uses a total of forty rounds, eight for input and

output whitening and thirty-two for the sixteen rounds of the F function which

will be explained later. There are multiple stages to key expansion as follows.

(a) Convert the input key into a series of 32-but words. Divide the input key

into K[0], K[1] ... K[7].

(b) Calculate the Reed-Solomon (RS) matrix, which is shown below.

(c) Generate the round key constraints. These are derived from the RS matrix

and denoted as Me and Mo. These are generated by multiplying the input key

K[] by the RS matrix as follows.

Figure 38: Reed-Solomon matrix

Figure 39: Generating round key constraints with RS matrix.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 28 of 72

(d) Compute the round subkeys – These are generated using the key-dependant S-

boxes, the h() function and the round key constraints Me and Mo. The h() function

takes a 32-bit input and produces a 32-bit output. The formula for doing so is

shown below

(e) Organise the round subkeys. They are organised into the following groups.

i. The first eight subkeys are used for input and output whitening.

ii. The remaining 32 subkeys are used for the 16 rounds of the F function.

5.4.2. TwoFish Encryption
There are four main steps to TwoFish encryption, and they are as follows.

1. Input Whitening – This is when you XOR the input plaintext block with the first

four round keys so that W0 = P0 XOR K0. The resulting blocks W0 etc, are then

fed into the sixteen rounds of the F function. Input whitening ensures that the

plaintext data is mixed with the key contents before entering the main rounds of

the scheme increasing its security.

2. F function – The F function is a non-linear operation during each round of

encryption and decryption. It consists of sixteen rounds, and it introduces

confusion making it difficult to attack. Each round of the F function consists of

the following steps.

i. Key mixing – At the start of every round, the input block is XORed with the

round key. There are two 32-bit round keys per round. The round key mixing

ensures that the round keys are integrated into the internal encryption process.

ii. Substitution - The input block is divided into 8-bit blocks, and each block is

substituted with the corresponding value from the key-dependant S-box.

iii. Permutation – The outputs from the S-boxes are multiped by the MDS

matrix, creating the diffusion effect, where one-bit results in a change in every

other bit.

iv. Pseudo-Hadamard Transform (PHT) – The outputs from the MDS matrix

are combined using a PHT operation. The PHT is a linear operation that mixes

data from the two 32-bit halves of the input block. The PHT is defined as:

Figure 40: Computing round subkeys

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 29 of 72

Where A and B are the 32-bit input halves and A’, and B’ are the 32-bit output

halves.

v. Output Whitening – After the 16 rounds of the F function, you will have

output blocks of four 32-bit words R0, R1, R2 and R3. XOR each one with the

corresponding round key to get the resulting ciphertext blocks, C0, C1, C2, and

C3.

5.4.3. TwoFish Decryption
Since TwoFish is a symmetric system, the decryption process is essentially the same as

encryption, except in reverse order and using the inverse of the matrixes. Below is a summary

of the decryption process.

1. Output Whitening – XOR the ciphertext with the output whitening round keys to

reverse the output whitening.

2. F Function – Perform the sixteen rounds of the F function in reverse order. Apply the

inverse of the PHT and multiply the outputs by the inverse MDS matrix. Then use the

inverse of the key-dependant S-boxes and use the inverse order of the round keys.

3. Input Whitening – XOR the output block from the F function with the input

whitening round keys to reverse the input whitening step and retrieve the original

plaintext.

TwoFish is known for its high efficiency, flexibility, and availability as it’s open source. It is

often used for VPNs, password storage and even software tamper protection.

TwoFish does have its issue though such as its complexity, making it harder to implement as

well as its need for a larger key length than AES to achieve the same level of security.

Figure 41: Pseudo-Hadamard Transform

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 30 of 72

6. What are quantum algorithms?
A quantum algorithm does the same procedure as classical algorithms where it is a step-by-

step procedure to perform instructions to solve a problem. Technically, all pre-quantum

algorithms can be performed on a quantum computer. They are not considered quantum as

they do not involve these two quantum-specific steps (a) superposition and (b)

entanglement.

a) Superposition separates a quantum bin or qubit from a classical bit. A classical bit

can only be one state at a time, either ‘0’ or ‘1’. A measurement of a classical bit

would not disrupt its state. A quantum bit can be a superposition, meaning it can be

both states ‘0’ and ‘1’. A measurement of this qubit would destroy its coherence and

disrupt its superposition state, effectively making it choose ‘0’ or ‘1’ (Metwalli,

2023).

b) Entanglement is when a pair or group of particles are entangled, and the quantum

state of each particle cannot be described as independent of the other particle(s).

(“Superposition and entanglement - Quantum Inspire”) If the bit in one particle is ‘1’,

so will the remaining particles, even if separated by a large distance. Entanglement

allows superdense coding, which is a quantum communication protocol to

communicate the number of classical bits by transmitting a small number of qubits,

under the assumption the sender and receiver pre-share an entangled resource. We can

send 2 bits via a single qubit and

can choose four quantum gate operations (Emspak, 2022).

6.5. How does Shor’s algorithm work?
Shor’s algorithm makes use of both classical and quantum methods to find the main integer N

(Rakhade, 2020). To find N, we need to know the two prime factors, g, and N.

We can use Euclid’s algorithm, which helps us determine the greatest common factor (GCF).

To use this, we subtract the smaller factor from the bigger number. Repeat this until one of

the factors is 0. For example, to calculate the GCF of 42 and 105 we can do the following:

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 31 of 72

Figure 42: Euclid’s Algorithm to get GCF.

6.5.1. Finding Factors of N
We do not need to guess a direct factor, rather a value that shares a factor is enough.

We can check GCF(g, N) with Euclid’s Algorithm. If the GCF(g, N) does not equal one, a

factor of N was found, and we can calculate N using g and N/g.

If the GCF(g, N) == 1, we have found the co-primes, this means we need a better guess, and

this is the more likely outcome. This is where we utilize Shor’s algorithm as it helps us obtain

a better guess.

If two values do not share factors and GCF(X, Y) == 1, then we can take our two co-primes,

X and Y,

Figure 43: Example is given p to show how the equation relates to co-primes.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 32 of 72

6.5.2. What can we do with this?
Using our early logic and math, we can improve our guess, g to find a factor of N:

Figure 44: How Shor's algorithm improves our guess, g

Figure 45: Using Euclid’s algorithm to solve for N.

6.5.3. Where are the Quantum aspects?
We used small integers and primes in our example, which is not very demanding on

computational resources, so is easy to do. The trouble comes in when you are using large

numbers, it takes a lot of time and resources to find p. Not every p will work and provides

some issues such as.

a) We don’t want a p-value that produces a multiple of N, we just want factors of N.

b) Odd numbers produce numbers with fractions which are hard and expensive to deal

with.

c) As N gets larger, search space for p increases drastically, testing so many values of p

would take too long.

This is where quantum computing comes in. When a quantum computer runs Shor’s

algorithm, it combines superimposed possible answers with interference will allow us to

compute the answer p, in a single computation.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 33 of 72

7. Post-Quantum Cryptography

7.6. Definitions
Polynomials – A mathematical expression that consists of variables and coefficients,

combined using addition, subtraction, multiplication, and non-negative integer exponents

(Mathsisfun, n.d.).

(Levasseur, 2021)- Is a mathematical structure that consists of a set of polynomials with

coefficients from a given field.

Coefficients - The coefficients of a polynomial are the constants that are multiplied by the

variables in each term. For example, in the polynomial 2x^3 - 5x^2 + 3x + 7, the coefficients

are 2, -5, 3, and 7.

Irreducible - An irreducible polynomial is a polynomial that cannot be factored into a

product of two or more non-constant polynomials with coefficients from the same field

(Joyce, 2016).

Matrix - A matrix is a rectangular array of numbers or symbols that can be used to represent

a system of linear equations, transformations, or data.

Noise - Refers to errors or disturbances that can occur during the transmission or processing

of data. Often used to deter eavesdroppers (University of Basel, 2020).

Error Matrix - A matrix that represents the errors or noise that occur during the transmission

or processing of data.

Euclidean Norm - A mathematical concept that measures the length or magnitude of a vector

in a Euclidean space.

Parity Check - A mathematical concept that measures the length or magnitude of a vector in

a Euclidean space.

Random Oracles – This is a hypothetical mode in hash function proofs to represent a perfect

hash function. The oracle believes that each unique input produces a truly random output that

is uniformly distributed, these are used in cryptographic proofs to simplify and provide

security guarantees, but in practice, they do not exist.

7.7. Lattice-Based Cryptography
Lattice-based cryptography is one of the most promising branches of post-quantum

cryptography which focuses on developing quantum-resistant algorithms. Lattice-based

cryptography is very efficient in providing secure encryption, digital signatures, and even key

exchange protocols. As quantum computers approach, there is a need for quantum resistance,

and Lattice-based cryptography is one of the strongest candidates to provide a secure future

(Chi, 2015).

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 34 of 72

7.7.1. What is a lattice?
A lattice can be thought of as two points stretched out on an infinite field.

Figure 46: Lattice Example.

Every dot in the above is called a vector, so a vector is just a point in the lattice above. We

can see that the vectors are spaced out above, which is considered a lattice, being a collection

of evenly spaced vectors.

7.7.2. What is a basis of a lattice?
Lattices are infinitely sized objects, but computers only have a finite amount of memory to

work with, so we need a method to represent lattices in a finite form. For this, we use a

‘bases’ of a lattice, meaning a small collection of vectors to reproduce any point in the grid

that forms the lattice.

7.7.3. How is a basis calculated?
Take the lattice above and plot a point on the lattice above, making sure to select two points

that do now lie on the same line. We can plot two points on (2,0) and (0,2) as follows.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 35 of 72

Figure 47: Plotted points on a lattice

We can take two integers, in this case, 3 and -1. We multiply the coordinates of the first point

by 3, and the second point by -1, resulting in a new point (6, -2). We can keep doing this with

our two original coordinates to draw a grid. The basis consisting of vectors (2,0) and (0,2)

generates the lattice points with even coordinates. The idea is, by choosing a basis we have

chosen an entire lattice. We have now just created a finite grid from an infinite field. We can

have many different bases, by just choosing different starting coordinates. It’s important to

know that a shorter basis is better at solving lattice problems in cryptography than long ones.

This is due to the computational efficiency with short basis over longer ones.

7.7.4. Lattice-based problems
There are multiple mathematical problems related to lattices, but we are most interested in the

Learning With Errors (LWE) problem and its variants Ring-Learning With Errors (Ring-

LWE), Learning With Errors Over Module Lattices (MWLE), the Short Integer Solution

problem (SIS) and the Module Short Integer Solution problem (Module-SIS).

7.7.5. The Learning With Errors Problem
The LWE problem can be described as follows: Given the secret vector s ∈ Z_q^n and a

random vector a ∈ Z_q^n, the LWE problem involves finding the secret vector s from a

noisy linear equation: t = a * s + e(mod q) where: t ∈ Z_q is the noisy inner product,

e ∈ Z_q is a small error term, and q is a modulus. ∈ denoting ‘is an element of’.

The LWE problem I believed to be hard because the presence of the error term e makes it

computationally infeasible to recover the secret vector s. This is closely related to the

hardness of other lattice problems such as the Shortest Vector Problem. The problem involves

searching for the shortest non-zero vector in a lattice. Some algorithms compute an estimate

of this, but none are 100% accurate. It’s believed not even quantum computers can efficiently

solve this issue. The Falcon post-quantum algorithm relies on the LWE problem.

7.7.6. The Ring Learning With Errors problem
Ring-LWE is a variant of LWE, but rather than operating around vectors, it operates round

polynomial rings. Ring-LWE is more compact and efficient in cryptographic terms. The

Ring-LWE problem can be described as follows: Given a secret polynomial ‘s’ and a random

polynomial ‘a’, both from polynomial ring R the Ring-LWE problem involves finding a

secret polynomial s from a noise polynomial equation, t = a * s + e (mod q), where t is the

noisy product of the polynomials ‘a’ and ‘s’, e is the small error polynomial and q as the

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 36 of 72

modulus.

The polynomial ring R is usually defined as R = Z_q[x] / (f(x)), where Z_q[x] is the ring of

integer polynomials with coefficients modulo q, and f(x) is an irreducible polynomial.

The hardness of the Ring-LWE is based on the LWE but has more compact and efficient

cryptographic schemes.

7.7.7. The Learning With Errors Over Module Lattices
This is another variant of the LWE problem but also combines the advantages of Ring-LWE

and LWE. The MWLE problem can be described as follows: Given a secret matrix S ∈

Z_q^{n x m} and a random matrix A ∈ Z_q^{n x m}, the MLWE problem involves finding

the secret matrix S from the noise equation: T = A * S + E (mod q) where, T ∈ Z_q^{n x m}

is the noisy product of the matrices A and S, E ∈ Z_q^{n x m} is a small error matrix and q is

a modulus.

The module lattice allows for more cryptographic constructions with varying levels of

efficiency and security. Both CRYSTALS-Kyber and CRYSTALS-Dilithium rely on the

MWLE.

7.7.8. The Short Integer Solution problem
The Short Integer Solution (SIS) is closely related to the LWE problems and can be described

as follows: Given a random matrix A ∈ Z_q^{n x m} (with n < m), and a positive integer

bound β, the SIS problem involves finding a non-zero vector x ∈ Z^m such that:

A * x = 0 (mod q) and ||x|| ≤ β where A * x denotes the matrix-vector multiplication, ||x||

denotes the Euclidean norm (or length) of vector x and q is the modulus.

The aim is to find a short, non-zero integer vector x that satisfies the linear equation modulo

q. SIS is considered hard due to it being computationally infeasible to find such a short vector

when given the random matrix A. Some algorithms can make an estimated guess, but none

can make a guarantee.

7.7.9. The Module Short Integer Solution Problem
The Module Short Integer Solution (Module-SIS) is a generalisation of the SIS problem,

extending it to include module lattices. The Module-SIS problem can be described as follows:

Given a random matrix A ∈ Z_q^{n x m}, an integer bound β, and a module structure defined

by a polynomial ring R = Z_q[x]/(f(x)), the Module-SIS problem involves finding a non-zero

vector x ∈ R^m such that: A * x = 0 (mod q) where A * x denotes the matrix-vector

multiplication, with coefficients in the polynomial ring R, ||x|| denotes an appropriate norm

(or length) of the vector x, typically defined over the coefficients of the polynomials, f(x) is

an irreducible polynomial and q is the modulus.

The objective is to find a short, non-zero vector x with coefficients in the polynomial ring R

that satisfies the linear equation modulo q.

7.7.10. Lattice-based Cryptography Conclusion
Lattice-based cryptography has already become the new direction of cryptography, as three

of the four algorithms from the NIST Post-Quantum Cryptography Standardization

competition were lattice-based algorithms. There are already many improvements made in

the efficiency using the problems mentioned above and research is constantly being done to

uncover more information.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 37 of 72

7.8. Multivariate Quadratic Cryptography
Multivariate Quadratic (MQ) Cryptography relies on the hardness-solving systems of

multivariate quadratic equations over finite fields. In MQ, the security is based on the

difficulty of solving a system of n quadratic polynomial equations with m variables over a

finite field F, typically named F_q (Huang, n.d.).

7.8.1. What is a multivariate quadratic equation?
A multivariate quadratic equation is an equation in which the highest degree of all variables

is 2. In other words, it is a polynomial equation in which each term has at most two variables

raised to a power of two. 4x^2 + 3xy + 2y^2 = 7 is considered a multivariate quadratic

equation. Multivariate quadratic equations can have multiple variables and can involve cross-

terms, i.e., terms involving products of two different variables.

7.8.2. What makes multivariate quadratic equations over finite fields difficult?
Exponential Growth – With m variables, the search space for solutions in a finite field

grows exponentially with the number of variables, making it hard to brute-force solutions.

Non-Linearity - Quadratic equations introduce nonlinear relationships among the variables,

making it more challenging to solve by making it more computationally complex.

Lack of Algorithms – There are no current algorithms that can currently solve instances of

the MQ problem efficiently.

NP-Hardness - The MQ Problem is known to be NP-hard under certain assumptions, which

indicates that it is unlikely to have an efficient algorithm for solving it in the general case.

MQ algorithms consist of a public key, which is a system of multivariate quadratic equations,

and a private key. The most popular application of MQ cryptography is in the design of

digital signatures such as the Unbalanced Oil and Vinegar (UOV) and the Rainbow scheme.

The Rainbow scheme is a generalisation of the UOV and was entered into the previously

mentioned NIST post-quantum competition.

7.8.3. The Unbalanced Oil and Vinegar (UOV) scheme.
The UOV scheme is a digital signature scheme based on Multivariate Quadratic (MQ)

Cryptography. The idea is to construct a trapdoor function based on systems of multivariate

quadratic equations. The variables are partitioned into two sets: oil variables and vinegar

variables. The number of vinegar variables is usually larger than the number of oil variables,

hence the name "unbalanced." The UOV scheme consists of three main algorithms:

Key Generation – A private and public key pair is created. The public key is obtained by

composing the private key's quadratic equations with the affine transformations.

Signing - The signer computes the hash of the message and then solves the private key's

quadratic system using the easily solvable structure. This results in a signature that is a vector

of values for the oil and vinegar variables.

Verification - The verifier first computes the hash of the message and then substitutes the

signature's values for the oil and vinegar variables in the public key's quadratic equations.

The security of the UOV scheme relies on the hardness of solving the system of multivariate

quadratic equations (the MQ Problem) without knowledge of the trapdoor information (the

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 38 of 72

private key). As mentioned before, the Rainbow post-quantum algorithm is based on UOV

and will be explained in greater detail in this document.

7.9. Code-Based Cryptography
Code-Based Cryptography relies on the hardness of decoding random linear codes (Singh,

2019).

7.9.1. The Decoding problem
The hardness of decoding random linear codes forms the foundation of code-based

cryptography. The most well-known problem in this area is the "decoding problem," which

can be described as follows: Given a linear code, a received word, and a parameter t (number

of errors), the goal is to find the original code word that is at most t errors away from the

received word. This problem is NP-hard, which indicates that it is unlikely to have an

efficient algorithm for solving it in the general case.

7.9.2. Quasi-Cyclic Moderate-Density Parity-Check (QC-MDPC)
QC-MDPC codes are a specific class of error-correcting codes which are efficient and have

small key sizes. QC-MDPC codes are a variant of Low-Density Parity-Check (LDPC) codes

with a quasi-cyclic structure, which allows for more compact representations and efficient

implementations.

In QC-MDPC codes, parity check matrices are constructed using cyclic shifts of a small

number of fixed submatrices, which are typically square matrices of size 4x4 or 8x8. These

submatrices are designed to have good error-correcting properties, and the cyclic shifts allow

for efficient encoding and decoding of the codes. QC-MDPC codes are characterized by their

rate, which is the ratio of the number of information bits to the total number of bits in the

code. The rate of QC-MDPC codes can be adjusted to achieve different levels of

performance.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 39 of 72

Figure 48: The error performances of two QC-MDPC lattices with n 0 = 3 (rate 0.67) and n 0 = 4 (rate 0.75)

7.9.3. What makes QC-MDPC hard to solve?
Large Search Space - When decoding a random linear code, the number of possible

codewords grows exponentially with the code's length.

Error Correction - The error correction capability of a code is the maximum number of

errors that can be corrected. For QC-MDPC codes, this capability is moderate, meaning that a

significant number of errors can be corrected. However, the decoding problem becomes

harder as the number of errors increases, approaching the code's error correction capability. It

also becomes more resource-consuming to continue error corrections.

Decoding Algorithms - Regarding random linear codes and QC-MDPC codes, no efficient

decoding algorithms are known for the general case, and the best-known algorithms have

exponential complexity in the worst case.

NP-Hardness - While the hardness of decoding QC-MDPC codes specifically has not been

proven to be NP-hard, the problem is still believed to be hard for both classical and quantum

computers.

The quantum-resistant algorithm BIKE uses QC-MDPC in its systems.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 40 of 72

7.10. Hash-Based Cryptography
As previously mentioned, hashing functions do not rely on the mathematical problems that

the symmetric and asymmetric key systems in classical cryptography. This means that

hashing is somewhat quantum-resistant. Some care does need to be taken as hash functions

using smaller key sizes may be broken at an accelerated speed, but it is still believed that

algorithms like SHA-256 and SHA-3 will be quantum-resistant. This, however, does not

make them quantum algorithms as they do not hold any quantum properties as listed

previously. The final finalist of four was SPHINCS+ which is a hash-based quantum

algorithm. SPHINCS makes use of both hash functions and Merkle Trees for its security and

performance.

7.11. Non-Interactive Zero-Knowledge Proofs (NIZPKs)

7.11.1. What is a Zero-Knowledge Proof?
A standard zero-knowledge proof is a way of proving the validity of a statement without

revealing the statement itself. The ‘prover’ is the party trying to prove a claim, while the

‘verifier’ is responsible for validating the claim. The communication is in real-time and

interactive. This is a big flaw as it can often be slow and tedious to complete (Ethereum,

2022).

Figure 49: Zero-Knowledge Proof Example

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 41 of 72

7.11.2. What is a Non-Interactive Zero-Knowledge Proof?
The prover creates a proof without any interaction with the verifier. This proof can then be

verified by anyone with access to the public information and the proof itself. The prover

creates a proof without any interaction with the verifier. This proof can then be verified by

anyone with access to the public information and the proof itself. If the statement is true and

both the prover and verifier follow the protocol, the verifier will accept the proof as valid

(Geeksforgeeks, 2022).

7.11.3. How does the process change from a ZKP to a NIZKP?
A common technique is the Fiat-Shamir heuristic, which transforms a ZKP into a NIZKP.

This involves replacing the verifier's random challenges with a deterministic function, usually

a hash function, of the prover's commitments and public information. This allows the prover

to generate the proof independently, but it requires the assumption that the hash function used

is secure and behaves like a random oracle.

7.12. CRYSTALS-Kyber
In the following paragraphs, for any terms underlined and highlighted in bold, see the end of

this section for definitions.

CRYSTALS-Kyber is a post-quantum key encapsulation mechanism that bases its security on

the learning with errors over module lattices problem which combines the usual LWE with

the ring variant problem (Ring-LWE), It is believed to be resistant to both classical and

quantum attacks (Roberto Avanzi, 2021). It is designed to provide a secure and efficient key

exchange for use in a variety of applications such as secure communication, digital signatures

and more.

Kyber was selected by NIST in July 2022 as one of the four winners of their Post-Quantum

Standardisation (NIST, 2022).

7.12.1. Key Generation
In this step, a public-private key pair is generated for the receiver.

1. Choose Parameters - Select the parameters for the scheme, including modulus q, the

ring dimension n and the error distribution ψ. In Kyber, n is a power of 2, and ψ is

typically a discrete Gaussian distribution or binomial distribution.

2. Define the Ring R_q – Construct the polynomial quotient ring R_q = Z_q[X] /

(Φ_n(X)), where Φ_n(X) = X^n + 1 is the n-th cyclotomic polynomial. Polynomials

in R_q have a degree less than n, and their coefficients are elements of the finite field

Z_q.

3. Sample a Random Polynomial ‘a ‘– Choose a uniformly random polynomial ‘a’

from R_q. This polynomial serves as a public parameter as is part of the receiver’s

public key.

4. Sample Secret and Error Polynomials – Choose two polynomials ‘s’ and ‘e’ from

the error distribution ψ. The polynomial ‘s’s servers as the receiver’s secret key, while

‘e’ is used to add noise to the public key, ensuring the hardness of the underlying

problem.

5. Compute the public polynomial ‘b’ – Calculate the public polynomial ‘b’ b = a * s

+ e. The polynomial ‘b’ is computed in the ring R_q, which means the arithmetic is

performed modulo q and modulo the ideal generated Φ_n(X).

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 42 of 72

6. Public and secret keys – The public key is the pair (a,b) and the secret key is the

polynomial ‘s’. The public key can be shared with others who want to securely

communicate with the receiver, but the secret key must be kept private.

The whole process relies on the hardness of the ring-LWE problem, which makes it hard for

any attacker to recover the secret key from the public key even with a quantum computer.

7.12.2. Encapsulation
Kyber allows a sender and recipient to securely transmit a shared secret to begin

communication. To encapsulate a key with Kyber, a sender generates a random symmetric

encryption key and uses the recipient’s public key to encrypt it. The encrypted key is then

sent to the recipient who uses their secret key to decapsulate the shared secret to retrieve the

symmetric encryption key for an encryption algorithm such as AES. To begin the

encapsulation process you must do the following. To clarify, steps 1 and 2 are repeated to

ensure the right parameters are being used.

1. Choose parameters – Select the parameters for the scheme, including modulus q,

ring dimension n and error distribution ψ. These parameters should be the same as

those used in the key generation process.

2. Define the ring R_q - Construct the polynomial quotient ring R_q = Z_q[X] /

(Φ_n(X)), where Φ_n(X) = X^n + 1 is the n-th cyclotomic polynomial. This step

ensures that the arithmetic operations during encapsulation are consistent with those

used in key generation.

3. Parse the receiver’s public key- Obtain the receiver’s public key, which is a pair of

polynomials (a,b) in R_q.

4. Sample a random message ‘m’ - Choose a uniformly random message 'm' from the

message space. The message space is a subset of R_q, and the choice of 'm' depends

on the specific encoding used in the scheme.

5. Encode the message ‘m’ - Convert the message 'm' into a polynomial 'm_hat' in R_q

using a suitable encoding function. This step ensures that the message is represented

in the same mathematical structure as the other polynomials in the scheme.

6. Sample a random polynomial ‘r’ – Choose a random polynomial ‘r’ from the error

distribution ψ. This introduces noise into the ciphertext to protect the ciphertext from

eavesdroppers.

7. Compute the ciphertext components ‘u’ and ‘v’ – Calculate the two polynomials as

follows:

u = a * r

v = b * r + m_hat

These polynomials represent the encapsulated message and are designed so that only

the receiver who has the secret key can recover the original message.

8. Form the ciphertext ‘c’ – Combine polynomials ‘u’ and ‘v’ to create the ciphertext

‘c’, which is a pair (u,v). This ciphertext can be securely transmitted to the receiver.

9. Derive the shared secret ‘ss’ – Compute the shared secret ‘ss’ by applying a hash

function to the encoded message ‘m_hat’. Both the sender and receiver will be able to

compute the same shared secret ‘ss’ which can be used to securely communicate.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 43 of 72

7.12.3. Decapsulation
Decapsulation involves the receiver recovering the original message and the shared secret

from the received ciphertext using their private key. This is done in the following steps.

1. Choose parameters - Select the parameters for the scheme, including the modulus q,

the ring dimension n, and the error distribution ψ. These parameters should be the

same as those used in the key generation and encapsulation processes.

2. Define the ring R_q - Select the parameters for the scheme, including the modulus q,

the ring dimension n, and the error distribution ψ. These parameters should be the

same as those used in the key generation and encapsulation processes.

3. Parse the received ciphertext - Obtain the ciphertext 'c' sent by the sender, which is

a pair of polynomials (u, v) in R_q.

4. Obtain the receiver’s secret key - Retrieve the receiver's secret key, which is a

polynomial 's' in R_q.

5. Compute the polynomial ‘w’ - Calculate the polynomial 'w' in R_q as the difference

between 'v' and the product of 'u' and 's', or w = v - u * s.

6. Attempt to recover message ‘m’ - Decode the polynomial 'w' to obtain an

approximation of the original encoded message 'm_hat'. The decoding function used

here should be the inverse of the encoding function used in the encapsulation process.

7. Re-Encapsulate the message ‘m’ - Using the recovered message 'm' and the

receiver's public key (a, b), compute the ciphertext components 'u_prime' and

'v_prime':

(a). u_prime = a * r

v_prime = b * r + m_hat

‘r’ is the polynomial used by the sender during encapsulation. The receiver does not

know ‘r’ but due to the nature of the scheme, can still compute ‘u_prime’ and

‘v_prime’.

8. Verify the ciphertext - Compare the received ciphertext (u, v) with the re-

encapsulated ciphertext (u_prime, v_prime). If they are equal, the recovered message

'm' is considered valid.

9. Derive the shared secret ‘ss’ - Compute the shared secret 'ss' by applying the same

hash function to the recovered message 'm_hat' as used in the encapsulation process.

7.12.4. Advantages of Kyber
1. Quantum Resistance - Kyber is designed to be secure against quantum attacks,

making it a suitable replacement for current public key cryptosystems such as RSA

and Elliptic Curves.

2. Efficiency – Kyber is computationally efficient regarding key generation and

encapsulation/decapsulation operations. They involve polynomial arithmetic which

can be performed quickly using Fast Fourier Transform or Number Theoretic

Transform.

3. Compact keys and ciphertext – Kyber has small key sizes and ciphertexts relative to

other post-quantum algorithms.

4. Choice of parameters – Kyber has parameter sets including Kyber512, Kyber768

and Jyber1024 which provide different trade-offs between security and performance

allowing users to select which one suits them best.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 44 of 72

5. Simple structure – Kyber is generally simple, with the mathematical concepts used

easily to understand which aids in analysis.

7.12.5. Disadvantages of Kyber
1. Exposure / life-span – Lattice-based cryptography is still a new research topic that

discoveries are constantly being made. This could lead to currently unknown

vulnerabilities exposing the algorithm and rendering it useless.

2. Larger keys and ciphertexts than classical algorithms – One of the most notable

trade-offs with quantum-resistant algorithms is the increased complexity yielding

larger keys and ciphertexts, which in effect increase the storage and bandwidth

needed for these.

3. Error distribution – Kyber makes use of error distributions such as discrete

Gaussian or binomial distributions. Generating these efficiently and securely can be

challenging, especially on weaker devices.

Kyber has many trade-offs to consider, is the increased complexity and security worth

the extra resources and time needed for these algorithms? Despite these, Kyber is

considered a promising candidate for post-quantum cryptography and was one of the

finalists in the NIST post-quantum cryptography competition.

7.12.6. Key Terms
Ring Dimension – A ring dimension refers to the dimension of a ring as a vector space over

its base field. A polynomial ring with coefficients in the field has a countably infinite

dimension. A ring is equipped with two binary operations, addition, and multiplication. In

Kyber, the ring dimension is related to which Kyber security level is chosen, which then

determines the size of the polynomials used, A larger dimension leads to more complexity,

larger keys and ciphertexts.

Error Distribution – Refers to the probability distribution of errors from the true value. It

characterized randomness of errors. In terms of Kyber, it is used to select random

polynomials to add noise to the Kyber scheme, increasing the hardness of the scheme.

Figure 50: Error Distribution Example

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 45 of 72

Gaussian Distribution – Is a continuous probability distribution in a bell-shaped curve,

defined by its mean (μ) and standard deviation (σ) It’s widely used in analytics due to the

Central Limit Theorem, which states that the sum of many independent, identically

distributed random variables approaches a Gaussian distribution.

Figure 51: Gaussian Distribution Example

Binomial Distribution – This is a discrete probability distribution that models the number of

successes in a fixed number of Bernoulli trials, each with the same probability of success. In

Kyber, this can instead be used for the Gaussian distribution as it can offer a more efficient

sampling.

Figure 52: Binomial Distribution Example

Cyclotomic Polynomial (Φ_n(X)) – This is a special type of polynomial that has roots that

are the nth primitive roots of unity. In Kyber, the nth cyclomatic polynomial, Φ_n(X) = X^n

+ 1, is used to define the polynomial ring R_q. Polynomials in this ring have coefficients

modulo q.

Coefficients – Refers to the elements of the polynomials used in the scheme. Polynomials in

Kyber have the following form, P(X) = c_0 + c_1 * X + c_2 * X^2 + ... + c_(n-1) * X^(n-1).

In this, c_i are (for I – 0, 1… n-1) are the coefficients of the polynomial P(X). Each

coefficient c_i is an integer that belongs to the set {0, 1… q-1}, it is an element in the ring

Z_q. The coefficients of the polynomial influence the properties of the generated keys.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 46 of 72

Uniformly Random – Refers to the property of selecting an element from a set such that

each element has an equal probability of being chosen, this is done to ensure unpredictability

and security.

Ideal Generated – Refers to the set of all polynomials that can be formed by multiplying the

generating polynomial by any other polynomial. In Kyber, the idea generated by the nth

cyclotomic polynomial is used to define the polynomial ring R-q.

Fast Fourier Transform (FFT) – An efficient algorithm for computing the discrete Fourier

transform (DFT) and its inverse. FFT is used in Kyber to perform polynomial arithmetics

efficiently.

Number Theoretic Transform (NTT) – A special case of DFT that operates in a ring of

integers modulo a prime number. NTT is used to perform efficient polynomial arithmetic, as

it allows fast multiplication of polynomials in ring R_q.

Discrete Fourier Transform (DTF) – Mathematical transformation to convert a signal or

sequence of values into its frequency-domain representation. Given a sequence of complex

numbers x_0, x_1… x_(N-1), DTF produces another sequence of complex numbers X_0,

X_1…., X_(N-1) where X_k represents hr amplitude and phase of the k-th frequency

component in the sequence. The DTF is defined as follows:

for k = 0, 1, … N-1 and I represents the imaginary unit (i^2 = -1).

This is used in lattice-based cryptography but is computationally expensive. NTT and DFT

reduce the complexity of the operations to make this computationally faster.

7.13. CRYSTALS-Dilithium
In the following paragraphs, for any terms underlined and highlighted in bold, see the end of

this section for definitions.

Like Kyber, Dilithium is based on lattice cryptography, specifically the Learning with Errors,

Module-LWE and the Module Short Integer Solution problem. Despite this similarity,

Dilithium instead is a quantum-resistant digital signature scheme (Anon., CRYSTALS-

Dilithium Algorithm Specifications and Supporting Documentation).

Dilithium was selected by NIST in July 2022 as one of the four winners of their Post-

Quantum Standardisation.

7.13.1. Key Generation
The main goal is to create a public key with a secret key that is mathematically retiled but

computationally hard to link together without the secret key. This process has some

similarities with Kyber but does differ as shown below.

1. Choose the security level – Dilithium offers three security levels, all with security

and performance trade-offs: Dilithium-2, Dilithium-3, and Dilithium-5. These

different levels will determine the specific parameters needed for the scheme such as

the polynomial degree ‘n’, integer modulus ‘q’ and error distribution ‘η’.

2. Sample the secret and error polynomials – (a) Sample a secret polynomial ‘s’s from

the error distribution ‘η’. This distribution is chosen to be a discrete Gaussian

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 47 of 72

distribution over the integers with a small standard deviation. The polynomial ‘s’

will have an ‘n’ coefficient, where ‘n’ is the polynomial degree specified by the

chosen security level.

(b) We must also sample an error polynomial ‘e’ from the error distribution η. The

error polynomial also has ‘n’ coefficients.

3. Generate public polynomial ‘a’ – Sample a public polynomial ‘a’ uniformly at

random from the ring R_q, where ring R_q is the ring of polynomials with

coefficients in the range 0 to ‘q-1’ and ‘q’ is the integer modulus specified by the

security level. The polynomial ‘a’ has ‘n’ coefficients.

4. Calculate the public polynomial ‘t’ – Compute the public polynomial ‘t’ as the

product of t = a* s +r in R_q. The polynomial ‘t’ has ‘n’ coefficients.

5. Output the key pair – (a) The public key is pair (a, t), this public key can be shared

with anyone and is used for signature verification. (b) The secret key is polynomial

‘s’. This secret key must be kept private and is used for signing messages.

The security f the Dilithium scheme relies on the hardness of the Learning with Errors (LWE)

and Ring-LWE problems. Given the only public key (a,t), it’s believed to be computationally

infeasible to recover the keypair or forge a signature without knowing the secret key.

7.13.2. Signing
The main goal of the signing process is to create a signature for a given message using a

secret key so that the signature can be verified by anyone with the corresponding public key

like follows.

1. Compute the hash of the message – Use cryptographic algorithms such as SHA256

or SHA-3 to generate a hash ‘m’ of the message you want to sign.

2. Sample a random polynomial ‘y’ – Sample a random polynomial ‘y’ from a

distribution with bounded coefficients. The distribution used in Dilithium is typically

a centred binomial distribution or a discrete Gaussian distribution with a small

deviation. The polynomial ‘y’ has ‘n’ coefficients, where ‘n’ is the polynomial degree

specified by the chosen security level.

3. Compute w = a * y – Calculate the product of public polynomial ‘a’ and the random

polynomial ‘y’ in the ring R_q, where R_q is the ring of polynomials with coefficients

in the range 0 – q-1, and ‘q’ is the integer modulus specified by the security level. The

polynomial ‘w’ and ‘n’ coefficients.

4. Generate a challenge – Compute a hash c = H(m, w) using the message hash ‘m’ and

the product ‘w’, where ‘H’ is the hash function used.

5. Compute the response – Calculate the response polynomial ‘z’ as the sum of the

random polynomial ‘y’ and product of the challenge hash ‘c’ and secret polynomials;

such that

z = y + c * s. The polynomial ‘z’ has ‘n’ coefficients.

6. Output signature – The signature is the pair (z, c). The signature can be shared along

with the message so that anyone with the corresponding public key can verify the

message’s authenticity.

The idea of the Dilithium signing process is to create a signature that can be verified

efficiently using the public key, but also being computationally hard to forge without the

secret key.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 48 of 72

7.13.3. Verification
The main goal of verification is to check whether a given signature for a message is valid

using the corresponding public key. If valid, it provides a guarantee that was message was

signed by the holder of the secret key associated with the public key. The steps are as

follows.

1. Compute the hash of the message – Generate a hash ‘m’ of the message, whilst

making sure you are using the same hashing algorithm that was used by the signer.

2. Compute ‘w’ from the signature – Calculate ‘w’ so that w = a * z – c * t, using the

signature components ‘z’ and ‘c, and the public key components ‘a’ and ‘t’, in the

ring R_q.

3. Generate a challenge – Compute the hash ‘’c so that c = H(m,w) using the message

hash ‘m’ and the product ‘w’, where ‘H’ is the hashing algorithm used in the signing

steps.

4. Check the signature – Verify that the computed hash ‘c’ matches the hash ‘c’ from

the signature received. If they match, the signature is valid, and you can be sure that

the message was not altered in transit and that the sender of the message was indeed

the person who signed said message.

Since hashes are one-way functions, we cannot just reverse the operations and work our way

back. We need to recalculate the challenge hash ‘c’ based on the received message and

signature and try to find a match to verify the message and its authenticity.

7.13.4. Advantages of Dilithium
1. Post-Quantum Security – Dilithium is resistant to both classical and quantum

attacks, as even the Learning with Errors problem is computationally hard for a

quantum computer to solve. Classic algorithms such as RSA or ECDSA are

vulnerable to breaking broken via quantum computers, so Dilithium poses as a good

candidate for digital signature in the future.

2. Efficiency – Like Kyber, Dilithium about other post-quantum algorithms has short

signatures and public keys such as SPHINCS+. Its signing and verification stages are

mathematically efficient making it suitable for a range of devices and applications.

3. Random Oracles – Dilithium does not rely on random oracles, which is an idealized

model where hash functions have random oracles. This is seen as an advantage as

schemes that rely on these are less secure.

7.13.5. Disadvantages of Dilithium
1. Larger Key Sizes – It is expected with the development of quantum-resistant

algorithms that the key sizes will be much larger to provide more security. This does

mean that it may not be as quick as the classic algorithms, especially on weaker

devices.

2. Life Span – Like all post-quantum algorithms, Dilithium is a new scheme and hasn’t

had the optimisation that classical algorithms have received over the last few decades.

This may lead to the discovery of unknown vulnerabilities which can harm the usage

and development of this algorithm.

3. No Forward Secrecy – Most digital signatures, including Dilithium, do not initially

implement forward secrecy. If the secret key is compromised, then a signature can be

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 49 of 72

forged. Forward secrecy can be implemented through other means but is not inherited

in Dilithium itself.

7.13.6. Key Terms
Standard Deviation – This is a statistical measure that quantifies the amount of variation in

a set of data values. It’s used to understand how spread out the data points are from the

average value. A small deviation indicates the points are clustered together whilst large

means they are more spread out.

Regarding Dilithium, it’s related to the error distribution used to sample secret and error

polynomials, with them sampling from a discrete Gaussian distribution. This standard

deviation determines the level of ‘noise’ introduced which affects security and efficiency. A

smaller deviation leads to smaller coefficients, meaning smaller keys. However, a balance

must be made with the deviation amounts as you don’t want keys too small or big that will

severely affect the security and performance of the algorithm.

Forward Secrecy – This s a property of cryptographic protocols that ensures the

confidentiality of past communications, even if the long-term key is compromised. It

essentially protects past sessions from being decrypted by an attacker. This is usually done

using short new term keypairs for each session. As Dilithium does not inherently apply this, it

means that if your secret key is compromised, an attacker can decrypt all past

communications you made using that secret key.

Challenge – The challenge is a deterministic value based on the hash of the message and the

value of ‘w’. The challenge is used to bind the message to the signature and ensure it cannot

be used for a different message or tampered with without it being detected. This makes it

difficult for an attacker to forge a signature or modify it without the secret key.

7.14. PICNIC
In the following paragraphs, for any terms underlined and highlighted in bold, see the end of

this section for definitions.

PICNIC is a post-quantum signature scheme based on the concept of zero-knowledge proofs

and a non-interactive variant called non-interactive zero-knowledge proofs (NIZKPs)

(Zaverucha, 2020). The primary goal is to allow a prover to convince a verifier that they

know a secret without revealing any information about the secret itself.

7.14.1. Key Generation
PICNIC involves creating a private-public key pair. The private keypair is kept secret by the

signer while the public key is shared with others who need to verify the signer’s signature.

1. Choose LowMC parameters – Select the parameters for the LowMC block cipher,

including the block size (n) and the key size (k)m the number of S-boxes (m), the

number of rounds ® and the type of linear layer used. These parameters impact the

security level and security of the scheme. Picnic has multiple levels of security –

PICNIC-L1, PICNIC-L3 and PICNIC-L5. These all have two modes, PICNIC-FS

which is optimized for speed over security, and PICNIC-FULL which focuses on

security over speed.

2. Generate a private key – The private key (sk) is essentially the secret key for the

LowMC block cipher. It is a randomly chosen k0bit string, where k is the key size

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 50 of 72

determined by the chosen LowMC parameters. The private key needs to be a

cryptographically secure random number generator to generate the private key.

3. Generate public key – The public key (pk) in PICNIC consists of two parts; an input

value (x) and the corresponding output value (y) of the LowMC block cipher when

using the private key (sk) as the secret key.

(a) Choose a random n-bit input value (x), where n is the block size determined by

LowMC parameters.

(b) Compute the output value (y) by encrypting the input value (x) using the LowMC

block cipher with the secret key (sk).

(c) The public key (pk) is the tuple (x,y). Tuple refers to an ordered / sequence of

elements.

4. Output the key pair – The resulting key pair is (sk, pk), where sk is the private key

(LowMC secret key) and pk is the public key (tuple (x,y). The signer keeps the

private key secret and shares the public key with others to verify their signatures.

By using the LowMC block cipher, PICNIC can achieve its security goals whilst maintaining

its efficiency in signing and verifying. The public (pk) serves as a commitment to the private

key, and the zero-knowledge proof in the signature ensures the signer knows the

corresponding private key without revealing it.

7.14.2. Signing
The signature scheme is built using the MPC-in-the-head approach, which turns a multi-

party computation (MPC) protocol into a non-interactive zero-knowledge proof.

1. Compute the message digest – Hash the message, m, using a cryptographic hash

function such as SHA256 or SHA3.

2. Randomly partition the MPC protocol – Choose a parameter t, representing the

number of views in which the MPC will be partitioned.

Generate t random seeds (s1 s2 …. St) and use them to create t random tapes (T1, T2,

Tt) which serve as the source of randomness for the virtual parties in the MPC

protocol.

3. Run the MPC protocol for each view – For each view Vi, execute the following

steps:

(a) Assign each of the ‘t’ parties a random tape ‘Ti’ and a share of the private key

‘ski’. The sum of all private key shares equals the actual private key (sk).

(b) Emulate the MPC protocol for viewing Vi using random tapes and private key

shares. The protocol computes the LowMC encryption with the secret key shares as

input. The output of the MPC protocol for each view is an intermediate value (wi)

and a transcript (Ti) containing the communication between all virtual parties.

(c) Compute the commitment (Ci) for each view by hashing the initial state and the

intermediate value (wi),

4. Compute the challenge set – The signer computes a challenge set by hashing the

commitments of all views and the message digest. The challenge consists of c views,

where c is a predetermined parameter. The views in this challenge set will be used to

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 51 of 72

construct the Zero-knowledge proof, whilst the other views will be used s responses to

the challenge.

5. Reveal non-challenged views - The signer reveals the non-challenged views by

providing the private key shares and the transcripts of these views. These revealed

views will be used by the verifier to check the consistency of the proof.

6. Generate the NIZKP – The signer combined the non-challenged views and the

commitments of the challenged views to construct the non-interactive zero-knowledge

proof. This proof is the core component of the algorithm.

7. Compute the signature – The signer uses a hash function to compress the NIZKP

and the message digest into a signature.

The resulting signature can be sent with the message to the recipient, who can verify its

validity by issuing the public key and the verification process. The NIZKP in the signature

proves the signer knows the private key corresponding to the public key without revealing its

information.

7.14.3. Verification
The verification process checks the validity of the given signatures. The verifier does not

need to know the signer’s private key to perform this verification. The steps area is as

follows.

1. Compute the message digest – Hash the message m, using the cryptographic hash

function used in the signing process to obtain message digest d.

2. Parse the signature – Extract the NIZKP and the commitments of the challenged

views from the signature. The NIZKP contains private key shares, random tapes,

intermediate values, and transcripts for non-challenged views. It also contains the

commitments for the challenged views and the message digest.

3. Check the non-challenged views – For each non-challenged view Vi, perform the

following checks:

(a) Verify that the private key shares when combined, result in the correct public key.

(b) Verify that the random tapes Ti and the private key shares ski used in the MPC

protocol for view Vi are consistent with the provided intermediate value wi and

transcript Ti.

(c) Verify that the commitment Ci of the non0challened view Vi matches the

commitment included in the signature.

4. Reconstruct the challenged views – Using the transcripts Ti on the non-challenged

views, the verifier can reconstruct the private key shares and random tapes of the

challenged views. For each challenged view Vi, perform the following steps:

(a) R4econstruct the private key shares ski and random tapes Ti from the transcripts

of the non-challenged views.

(b) Rerun the MPC protocol for view Vi using the reconstructed private key shares

and random tapes to obtain the intermediate value wi.

(c) Compute the commitment Ci by hashing the initial state and intermediate value wi.

5. Verify the challenged views – For each challenged view Vi, check the reconstructed

commitment Ci matches the commitment included in the signature.

6. Check the challenge set – Compute the challenge hash h by concatenating the

commitments of all views and the message digest and then hashing the result. Use the

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 52 of 72

challenge hash h to deterministically select the challenge set and check that it matches

the challenge set used during the signing process.

7. Determine the validity of the signature – If all checks have passed, the signature is

considered valid.

The verification process ensures the signature is only valid if it was created by the signer who

knows the private key corresponding to the public key. It checks the consistency of all

challenge views until the verifier is convinced of the signer’s knowledge. This means that the

verifier can technically repeat these steps over and over until they are convinced of the signer.

7.14.4. Advantages of PICNIC
Post-Quantum Security – PICNIC is believed to be secure against attacks from both

classical and quantum computers until our current classical algorithms, meaning that it’s an

important candidate for the future of cryptography.

Efficiency – PICNIC uses the LowMC block cipher scheme with low multiplicative

complexity, which is more efficient than other signature schemes in terms of computational

power needed.

Side-Channel Resistance – Due to the use of MPCs, PICNIC has a higher resistance to side-

channel attacks compared to other post-quantum schemes.

7.14.5. Disadvantages of PICNIC
Signature Size – PICNIC has relatively large signatures which leads to an increased need for

communication and storage overhead.

Performance – Although PICNIC is computationally efficient, is it still relatively slow as

there are a lot of steps involved in the scheme.

Choice of Parameters – PICNIC has a relatively large range of parameters to choose from,

which can generally be hard to find a good balance of which parameters suit you the best.

7.14.6. Key Terms
LowMC Block Cipher – This is a customizable block cipher with low multiplicative

complexity. It is efficient in terms of the number of AND gates used when implemented

which is suitable for zero-knowledge proofs.

Figure 53: LowMC Block Cipher example

Multi-Party Computation – This is a subfield of cryptography that deals with the problem

of securely computing a function with multiple inputs from different parties without revealing

any of its information. This allows PICNIC to split up its private key shares to be used

without revealing its contents.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 53 of 72

Side-Channel Resistance – Refers to the ability of an algorithm to withstand side-channel

attacks, which exploits information leaked through physical implementations such as timing

information, power consumption or even electromagnetic radiation. The MPC process within

PICNIC makes it hard for an attacker to correlate side-channel information to the secret key.

7.15. Falcon
In the following paragraphs, for any terms underlined and highlighted in bold, see the end of

this section for definitions.

Falcon is a digital signature scheme based on the Fast-Fourier Lattice-Based Compact

Signatures over NTRU) (Pierre-Alain Fouque, 2020). Falcon provides two levels of security

Falcon-512 and Falcon-1024, with the numbers indicating the key sizes.

Falcon was selected by NIST in July 2022 as one of the four winners of their Post-Quantum

Standardisation.

7.15.1. Key Generation
This process involves selecting appropriate parameters, choosing secret polynomials, and

computing a key pair. The steps are as follows.

1. Choose parameters – (a)Select a degree ‘n’, in which ‘n’ determines the size of the

polynomial ring Rq = Zq[X]/(X^n+1). Typically, ‘n’ is chosen as a power of two, and

its value directly impacts the security level and performance of the algorithm. The

larger ‘n’ is the more security it is providing but the more performance is impacted.

(b) Select an integer ‘q’ from the modulus. ‘q’ should be a prime integer large enough

to provide the desired security level. Like ‘n’, the larger this number is, the more it

will impact security and performance.

2. Generate secret polynomials – Select two secret polynomials ‘f’ and ‘g’ with small

coefficients. These coefficients should be chosen from a small range such as {-1,0,1}.

These polynomials should be selected in a way that ensures they are invertible in the

ring Rq. One method for generating these polynomials is to set the constant term of

each polynomial to be odd, guaranteeing invertibility.

3. Compute the private and public keys – (a) Compute the public key ‘h’. This is done

by multiplying the secret polynomial ‘g’ by the secret polynomial ‘f’ modulo ‘q’ so

that h = g*f mod q. (b) Prepare the key pair. The private key consists of the secret

polynomials’ ‘f’ and ‘g’ and the public key contains the polynomial ‘h’. These keys

will be used for signing and verifying messages,

It's important to maintain the secrecy of the private key while distributing the public

key to recipients, otherwise, attacks can decrypt or even forge signatures.

7.15.2. Signing
The signing process with Falcon involves hashing the message, generating a random nonce

computing the syndrome, and finding a short polynomial to create the signature. The signing

steps are as follows.

1. Hash the message – Given a message m, compute its hash hm using a cryptographic

hashing algorithm such as SHA245 or SHA3.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 54 of 72

2. Generate a random nonce – Randomly generate a small polynomial ‘r’ with

coefficients from a small range. This polynomial serves as a nonce value to ensure

each signature is unique, even if the message is identical.

3. Compute the syndrome – Using the public key ‘h’ and the hash ‘hm’, compute the

syndrome ‘s’/ The equation is s = r * hm mod q. This syndrome combines information

about the message, nonce and the signer’s public key.

4. Find a short polynomial – Use an algorithm such as Fast-Fourier Sampling (FFS)

to find a short polynomial ‘e’ such that e*f ≡ s mod q, where ‘f’ is the signer’s secret

polynomial from the private key, ≡ denoting equivalence. The FFS is designed to find

a short polynomial efficiently.

5. Create the signature – The signature of the message ‘m’ is the polynomial ‘e’ found

in the previous step. This signature is sent to the recipient with the message.

The Falcon digital signature aims to provide strong security guarantees whilst maintaining

efficiency.

7.15.3. Verification
The verification process is important to ensure the authenticity and integrity of a signed

message. To verify a signature, you do the following.

1. Hash the message - Given the original message m, compute its hash ‘hm’ using the

same hashing function used in the signing process.

2. Compute the reconstructed syndrome – Using the received signature ‘e’, public key

‘h’ and hash ‘hm’ of the message, compute the reconstructed syndrome

‘reconstructed’/ The equation is as follows: reconstructed = e * h – hm mod q. This

step aims to reconstruct the syndrome compute during the signing.

3. Check signatures validity – Verify that the signature polynomial ‘e’ has small

coefficients, indicating it’s a short polynomial. Falcon signatures must have small

coefficients which are essential for their security. Compare the reconstructed

syndrome ‘reconstructed’ with the original syndrome ‘s’ compute during the signing.

If they match, the equation e*f ≡ s mod q is valid, and the signature is also valid.

If both the signature ‘e’ is a short polynomial and the reconstructed syndrome matches the

original, the verification process confirms the signature is valid. This ensures the message’s

authenticity and integrity, as only the private key holder could have generated a valid

signature for that message.

7.15.4. Advantages of Falcon
Post-Quantum Security – Falcon is based on the hard lattice problems, which have been

introduced into the post-quantum era. It is believed these hard lattice problems are both

classic and quantum resistant.

Efficiency – Falcon is designed to be computationally efficient, allowing weaker systems to

implement this sort of algorithm.

Small Key Sizes – Falcon offers smaller key sizes compared to other algorithms based on the

Learning with Errors or code-based cryptography, leading to lower storage needs.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 55 of 72

Strong Security Guarantees – Falcon’s security is based on the Short Integer Solution and

Learning with Errors which has been extensively studied and is hard for even quantum

computers to solve.

7.15.5. Disadvantages of Falcon
Implementation – Implementing Falcon securely and efficiently can be challenging due to

the complicated underlying maths and requirements for precise number operations.

Implementing the Fast-Fourier Sampling can be difficult to do.

Side-Channel Attacks – If not implemented correctly, it can be left vulnerable to side-

channel attacks. Extra defences will need to be implemented to further prevent these attacks,

leading to decreased performance.

Larger Signature Sizes – Despite having relatively small key sizes, Falcon has larger

signature sizes requiring more storage requirements to store.

If Falcon can be implemented correctly, it can be a very efficient and secure algorithm to use.

Despite this, the implementation difficulty does have to be taken into consideration because if

done incorrectly, it can lead to attacks.

7.15.6. Key Terms
Invertible – Refers to an element that has an inverse. If element ‘a’ is invertible, there exists

another element ‘b’ such that the result of the operations between ‘a’ and ‘b’ yields the same

element for that operation. If ‘a’a has a modular inverse ‘b’ modulo ‘m’, then

(a * b) mod m = 1. This is important during the signing and verifying in Falcon as the secret

polynomial ‘f’ must be invertible to ensure a unique short polynomial ‘e’ can be found

satisfying the equation e * f ≡ s mod q.

Nonce – Short for ‘number used once’ is a random pseudo-random value used in

cryptography to ensure the uniqueness and unpredictability of tasks. As mentioned earlier, the

nonce is used to compute syndrome ‘s’ to ensure each signature is unique even if two of the

same messages are sent.

Syndrome – This is a value derived from a received message that contains information about

the errors or alterations that may have occurred during transit. In Falcon, it is computed

during the signing phase. During verification, the receiver reconstructs this syndrome, and it

matches they have a security guarantee that the message was not altered during transit.

7.16. BIKE
In the following paragraphs, for any terms underlined and highlighted in bold, see the end of

this section for definitions.

BIKE (Bit-Flipping Ken Encapsulation) is based on the learning with errors problem and uses

a variant called Quasi-Cyclic Moderate Density Parity-Check (QC-MDPC) (co, 2021).

7.16.1. Key Generation
The key generation process in BIKE involves the creation of a public-private key pair. They

are generated as follows.

1. Generate two quasi-cyclic (QC) parity-check matrices – Generate two binary

quasi-cyclic parity-check matrices, H0 and H1, each with dimensions (n,r), where n is

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 56 of 72

the block length and r are the number of rows. These matrices have a fixed Hamming

weight. This means that each row has t 1’s and the remaining entries 0’s.

Quasi-cyclic matrices have a cyclic structure meaning each row is a circular shift of

the previous row.

2. Compute generator matrix G – Compute the generator matrix G, which has

dimensions (r,n,-r). G is the null space of the concatenated party-check matrix [H0 |

H1]. G is a matrix that satisfies the equation [H0 | H1] * G = 0, where 0 is a zero

matrix. You can calculate G using Gaussian elimination.

3. Generate an error vector e of weight t – Generate a binary error vector e of length

n-r with a fixed Hamming weight t. The position of the ones in the error vector is

chosen uniformly at random.

4. Calculate the public key (pk) – The public key is calculated by multiplying the

generator matrix G by the error vector e so that pk = G * e. The result is the binary

vector of length n-r.

5. Form the private key (sk) – The private key is composed of the two parity-check

matrices H0 and H1, and the error vector e. It can be represented as sk = (H0, H1, e).

The key generation in BIKE involves generating two quasi-cyclic parity-check matrices,

computing a generator matrix and an error vector, and calculating the private-public key pair.

The public key is the product of the generator matrix and error vector, and the private key is

composed of the parity0check matrices and error vector.

7.16.2. Encapsulation
The BIKE algorithm creates a shared secret and a ciphertext for the given public key. This

process is typically executed by the sender of a message to ensure secure communication.

The steps for encapsulation are as follows.

1. Generate a random message vector m – Generate a binary message vector m of

length (n-r), where n is the block length and r is the number of rows in the parity

check H0 and H1, The message vector will be used to create the shared secret and

ciphertext.

2. Compute u = m * pk – Compute the vector u by multiplying the message vector m

by public key pk. The public key has dimensions (n-r), and the resulting vector u will

have the same dimensions.

3. Generate an error vector e’ of weight t – Generate a binary error vector e’ of length

n-r with a fixed Hamming weight t. The position of the ones is chosen uniformly at

random.

4. Compute v = m * G + e’ – Compute vector v by multiplying the message vector m

by the generator matrix G and adding the error vector e’/ The generator matrix G has

dimensions (r, n, -r) and the resulting vector v will have dimensions (n-r).

5. Create the ciphertext (ct) – The ciphertext consists of the concatenated vectors u and

v. The resulting ciphertext has dimensions (2*(n-r)). The ciphertext is transmitted to

the recipient along with the public key to establish secure communication.

6. Derive a shared secret (ss) using a key deviation function (KDF) – Derive a shared

secret, using a key derivation function (KDF) applied to the message vector m. The

shared secret is used for further communication and encryption between the sender

and the recipient.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 57 of 72

The encapsulation step involves generating a random message vector, computing

intermediate vectors u and v, creating a ciphertext by concatenating them and deriving a

shared secret using a key derivation function applied to the message vector.

7.16.3. Decapsulation
The decapsulation process in BIKE is used by the recipient to recover the shared secret using

the receiver ciphertext and their private key. This allows both parties to securely

communicate and establish a shared secret key for further communication. The details are as

follows.

1. Parse the ciphertext (ct) into two vectors u and v – Parse the ciphertext ct, into two

separate vectors u and v, each of length (n0r), where n is the length of the block and r

is the number of rows in the parity-check matrices H0 and H1.

2. Compute the syndrome s = H0 * u + H1 * v – Compute the syndrome vector s by

multiplying the private keys parity-check matrix H0 by vector u, and the matH1 by

vector v, and then add the results. The syndrome vector s has dimension (r).

3. Use a decoding algorithm to find error vector e” close to the original error vector

e – Using an algorithm such as the Bit Flipping algorithm, to find the error vector e”

that is close to the original vector e. The Bit Flipping Algorithm tries to correct errors

in the received syndrome s by iteratively flipping bits in an initially zero-initialised

error vector e”. This is done by using the private key’s parity-check matrices H0 and

H1 until a criterion is met.

4. Compute the message vector m’ by subtracting e” from v – Once you have

obtained the error vector e”, compute the recovered message vector m’ by subtracting

e” from the vector so that,’ = v – e”.

5. Derive the shared secret ss, using the same key derivation function as in the

encapsulation process – Derive the shared secret using the same KDF as the

encapsulation process and apply it to the recovered message vector m.

If the decapsulation process is successful, the derived shared secrets from both processes will

be the same. This ensures communication between the sender and recipient is secure and

allows them to establish a shared secret key for further communication.

7.16.4. Advantages of BIKE
Post-Quantum Security – BIKE is designed to be secure against classical and quantum

attacks as it relies on the Learning with Errors problem, making it a strong candidate for the

new era of cryptography.

Efficiency – Due to the usage of quasi-cyclic matrices and bit-flipping decoding, BIKE offers

efficient key generation, encapsulation and decapsulation. This results in low computation

complexity and reduced memory requirements on devices.

Hardware Implementation – BIKEs structure and bit operations allow high-speed and low-

power devices to take advantage of the algorithm.

Simplicity – BIKE is relatively simple compared to other algorithms which make it easy to

implement and analyse.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 58 of 72

7.16.5. Disadvantages of BIKE
Large Key Sizes – Compared to classical algorithms, BIKE has large key sizes requiring

more storage and transmission overhead.

Decoding Failure – The bit-flipping algorithm used by BIKE is generally good, it does have

a really low risk of failure which can be of concern in certain applications.

Adaptability – Considering post-quantum algorithms are still new, a new attack can be

discovered, which can question the defensive adaptability of algorithms such as BIKE.

7.16.6. Key Terms
Hamming Fixed Weight – Also known as a fixed weight, refers to the numbers of 1’s in a

certain binary vector and matrices. In BIKE, error vectors e and e’ and H0, H1 have a fixed

Hamming weight of t, meaning they contain t amount of 1’s.

Gaussian Elimination – This is a linear algebra technique used to solve systems of linear

equations by reducing a given matrix to a row echelon. In BIKE, this is used to compute the

generator matrix G from the concatenated parity-check matrix [H0 | H1].

7.17. Rainbow
In the following paragraphs, for any terms underlined and highlighted in bold, see the end of

this section for definitions.

The Rainbow post-quantum is a multivariate cryptographic signature scheme. It relies on

multivariate polynomial equation problems to be quantum resistant (Jintai Ding, 2019).

7.17.1. Key Generation
The key generation process includes choosing parameters, generating central and affine

maps, and then generating the key pair.

1. Choose parameters – Select the parameters of the scheme including:

(a) The number of variables (n), which is the total number of variables in the system.

(b) The number of questions (m), which is the number of equations in the system.

(c) The number of layers (u). The rainbow scheme is a generalisation of the

Unbalanced Oil and Vinegar (OUV) scheme. The parameter u represents the

number of layers in the structure, with u – 1 corresponding to the original OUV

scheme. Each layer has a different number of OUV variables to increase efficiency

and security.

2. Generate the central map F – Randomly generate the central polynomial map F,

which consists of m quadratic polynomials in n variables. Each polynomial can be

represented as a sum of monomials over a finite field, with randomly chosen

coefficients. To ensure that F is an invertible function, it should be constructed so that

its Jacobian matrix has full rank. This means that the linearization of the

polynomials at every point in the finite field should be linearly independent.

3. Generate affine maps S and T - Randomly generate two invertible affine maps S

and T. Both S and T are linear maps followed by a translation. Specifically, S: x ↦

S1x + s2 and T: y ↦ T1y + t2, where x and y are input and output vectors, S1 and T1

are invertible matrices, and s2 and t2 are translation vectors. The dimensions of S1

and T1 are nxn and mxm, respectively, while the dimensions of s2 and t2 are nx1 and

mx1.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 59 of 72

4. Public and Private key pair - The public key is the composition of the three maps: P

= T(F(S(x))), where x is the input. The private key consists of the central map F and

the two affine maps S and T. To obtain the public key, you first apply the affine map

S to the input x, then apply the central map F, and finally apply the affine map T.

The key generation process involves selecting appropriate parameters, generating a central

polynomial map F, and creating two affine maps S and T. The public key is the composition

of these maps whilst the private key consists of the individual maps.

7.17.2. Signing
The signing process as usual starts with hashing the message first. We then run into a unique

method provided by this algorithm as we then invert the public key and maps to get the

output signature. The steps are explained as follows.

1. Hash the message – Compute the hash of the message you want to sign using a

chosen hash function. This function should map the message to an m-dimensional

vector over a finite field. This hashed message, denoted as h, serves as a commitment

to the original message.

2. Invert the public key - Using the private key, find the preimage of the hash under

the public key. This step involves inverting the maps T, F, and S in reverse order. The

result will be the signature of the message and are as follows:

(a) Compute the inverse of the affine map T to obtain the intermediate value y, such

that y = T^(-1)(h). This involves finding the inverse of the matrix T1 and subtracting

the translation vector T2 -> y = T1^(-1)(h - t2).

(b) Compute the inverse of the central map F to obtain the intermediate value x’, such

that x’ = F^(-1)(y). This step is computationally demanding as it solves a system of m

quadratic equations in n variables.

(c) Compute the inverse of the affine map S to obtain the signature x such that x =

S^(-1)(x’). This involves finding the inverse of the matrix S1 and subtracting the

translation vector s2: x = S1^(-1)(x' - s2).

3. Output the signature – The resulting vector x is the signature of the message. This

signature can be transmitted alongside the original message to provide authentication.

The signing process in the Rainbow signature scheme involves hashing the message to obtain

a fixed-length commitment, inverting the public key using the private key, and outputting the

resulting signature.

7.17.3. Verification
Since we used the inverse of the maps and keys to compute the signature, we now must apply

the maps and keys normally. Which is unorthodox from the usual methods.

1. Hash the message – Compute the hash of the message using the same hash function

used during the signing process. This function should map the message to an m-

dimensional vector over a finite field.

2. Apply the public key – Apply the public key P to the signature x and compute P(x).

The public key is the composition of three maps: P = T(F(S(x))) so to apply the public

key we do the following:

(a) Apply the affine map S by computing S(x) by multiplying the matrix S1 with the

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 60 of 72

signature vector x and adding the translation vector s2: S(X) = S1x + s2.

(b) Apply the central map F by computing F(S(x)) and evaluating the m quadratic

polynomials that form the central map F with the input S(x). Each polynomial is

evaluated over a finite field.

(c) Apply the affine maps Y by computing T(F(S(x))) by evaluating the m quadratic

polynomials that form the central map F with the input S(x). Each polynomial is

evaluated over a finite field.

3. Check equality - Verify if the output of the public key applied to the signature is

equal to the hash of the message: P(x) == h. If they are equal, then the signature is

valid, and the message is authentic. Otherwise, this would mean either the signature

was tampered with, or the incorrect private key was used to verify the signature.

The verification step is unique in how it almost seems to work backwards from how you

would usually sign signatures, but this does inherit good security implications of the

algorithm.

7.17.4. Advantages of Rainbow
Post-Quantum Security – Rainbow relies on the multivariate polynomial equations

problem, which is believed to be resistant to classical and quantum attacks.

Efficiency – Rainbow offers very fast signature verification with its use of polynomial

evaluations and simple linear transformation when generating the keys.

Usage of the UOV scheme – Rainbow is a generalisation of the UOV scheme, which leads

to optimisation and increased security. It also adds flexibility with parameter selections.

7.17.5. Disadvantages of Rainbow
Large Key Sizes – The key sizes in Rainbow are relatively large compared to not only

classic algorithms but also other post-quantum signatures. This is due to the multiple

quadratic polynomials with many coefficients.

Expensive Signing Process – Despite having a quick verification process, Rainbow has a

very expensive signing process due to the need to invert the central map which requires

solutions to multiple multivariate quadratic equations. The parameters used could also make

this even more expensive to compute.

7.17.6. Key Terms
Monomials - A monomial is a mathematical expression that consists of a single term formed

by the product of one or more variables, each raised to a non-negative integer power. Within

Rainbow, monomials are the building blocks of the quadratic polynomials that constitute the

central map F.

Jacobian matrix: The Jacobian matrix is a matrix of all first-order partial derivatives of a

vector-valued function. In Rainbow, the Jacobian matrix plays a crucial role in ensuring that

the central map F is invertible.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 61 of 72

Figure 54: Jacobian Matrix

Central Maps - Refers to a set of m quadratic polynomials in n variables over a finite field.

The central map is a crucial part of the private key and serves as the core component of the

scheme.

Affine Maps - A linear transformation followed by a translation. In Rainbow, two affine

maps, S and T, are used to disguise the central map F, forming the public key. Both S and T

are part of the private key, and their purpose is to add an extra layer of complexity to the

system.

7.18. Sphincs+
In the following paragraphs, for any terms underlined and highlighted in bold, see the end of

this section for definitions.

Sphincs+ is a stateless signature scheme that is also hash-based meaning it relies on hash

functions for its security (Jean-Philippe Aumasson, 2022). Sphincs+ was the only hash-based

signature scheme selected as the NIST finalist in 2022.

7.18.1. Key Generation
Since Sphincs+ relies on hash functions, the methods are somewhat more traditional and

closer to the classical algorithms. It is to be remembered that hash functions aren’t like the

other classifications of other classical methods as they are still somewhat quantum resistant

as they do not rely on the mathematical issues mentioned earlier. Whilst the smaller hash

sizes will be under threat, hash functions such as SHA-256 are believed to still be viable, but

steps have been taken to develop SHA-3 which is a more secure hashing algorithm.

1. Generate a secret seed – The secret seed is a randomly generated bit string that

generates secret key elements. It should have enough entropy to ensure security. The

length of the secret seed depends on the hash function itself. You have 128-bit

security using SHA-256, the decrease in bit security is due to the birthday attack.

2. Generate a public seed - The public seed is another random bit string that is part of

the public key. It is used to generate public key elements such as addresses and

random values for the Merkle tree.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 62 of 72

3. Initialize Address (AD) - The address is a structure used to identify nodes in the trees

and is essential for the construction and traversal of the Merkle tree. It includes

several fields, such as layer, tree, and node positions. The address is not secret and

can be shared with others.

4. Generate the private key – Once these seeds are generated using a cryptographically

secure random number generator, you then initialize the address structure with

appropriate values for the fields.

5. Generate leaf nodes - The leaf nodes of the Merkle tree contain the public keys of

the WOTS+ or FORS instances, which are derived from the secret keys. Using the

secret seed and address structure, generate the secret keys for each WOTS+ and

FORS instance. Then, compute the corresponding public keys for each instance using

the public seed and addresses.

6. Hash the leaf nodes - Use a cryptographic hash function to hash the public keys of

the WOTS+ and FORS instances. These hashed values serve as the leaf nodes of the

Merkle tree.

7. Compute intermediate nodes - Starting from the leaf nodes, compute the

intermediate nodes of the Merkle tree by hashing the children’s nodes. The

intermediate nodes' values are computed as the hash of the concatenation of their

children’s nodes' values.

8. Compute the root - Continue computing the intermediate nodes until you reach the

top level of the tree. The single node at the top level is the root of the Merkle tree,

which serves as the public key for the SPHINCS+ scheme.

Within Sphincs+, the Merkle tree plays a large role in constructing the keypairs and their

elements.

7.18.2. Signing
Rainbow differs from other signature schemes as it generates WOTS+ signatures and uses a

FORS tree to create the signatures. The steps are as follows.

1. Hash the message – Hash the message to obtain a message digest.

2. Create a randomizer – Generate a random value, known as a randomizer, which is

used to randomize the signature.

3. Generate a Winternitz One-Time Signature (WOTS+) Signature – First choose an

unused WOTS+ instance from the Merkle tree to sign the message digest. Then use

the WOTS+ private key corresponding to the chosen instance to sign the digest.

4. Create a Forest of Random Subsets (FORS) tree - Choose an unused FORS

instance from the Merkle tree to sign the WOTS+ public key. Use the FORS private

key corresponding to the chosen instance to sign the WOT+ public key.

5. Compute Authentication Paths – For every WOTS+ signature and FORS tree,

compute the authentication paths. These paths are needed to verify the signatures and

consist of sibling nodes in the Merkle tree that led from the signed leaves up to the

root.

6. Create the signature – Combine the randomizer, WOTS+ signatures, FORS trees,

and authentication paths to create the final SPHINCS+ signature.

The signing process in SPHINCS+ combines the message digest, a randomizer, WOTS+

signatures, FORS trees, and authentication paths to generate a non-deterministic, quantum-

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 63 of 72

resistant signature. SPHINCS+ brings a lot of uniqueness and a variety of options, as some of

the other signatures tend to work in similar fashions. SPHINCS+ reused secure classical

methods and integrates them with quantum-resistant methods to create an interesting

signature scheme.

7.18.3. Verification
Verifying in SPHINCS+ will require us to reconstruct authentication paths and verify the

WOTS+ signature and FORS tree. The steps are as follows.

1. Hash the message – Hash the message with the same algorithm used in the signing

phase to obtain a message digest.

2. Recover Public Keys - Use the received WOTS+ signature and the message digest

to recover the WOTS+ public key. This involves iteratively applying the hash

function to the signature and the message digest according to the Winternitz

parameter (w) until the original public key is recovered.

Use the received FORS tree signature and the recovered WOTS+ public key to

recover the FORS public key. This involves iteratively applying the hash function to

the signature and the WOTS+ public key according to the FORS parameters (t, k, a)

until the original FORS public key is recovered.

3. Compute the Merkle Tree Root – We must first recover the WOTS+ and FORS

public keys and the received authentication paths to reconstruct the Merkle Tress

internal nodes. Iteratively hash the recovered public keys with their siblings from the

paths to move up the tree until you reach the top-level nodes. Once here, hash them

together to compute the root of the Merkle Tree.

4. Verify the Merkle Root – Compare the Merkle Tree root with the public key

provided by the sender. If they match the signature is valid and the message is

authentic. If not, the message should not be trusted.

Recovering the public keys from WOTS+ and FORS almost feels like a game, that is how

unique this algorithm looks. SPHINCS+ uses hash functions, which are already researched

extensively meaning that the algorithm has a high level of security.

7.18.4. Advantages of SPHINCS+
Post-Quantum Security – Since SPHINCS+ relies on hash functions, it is resistant to

quantum attacks so long as they keep using up-to-date algorithms such as SHA3. SHA-256 is

viable for now but might be worth using large SHA key sizes to mitigate future security risks.

Stateless – This means it does not require a signer to maintain state information between

signatures, making it practical to use.

High-Security Level – As mentioned, it has a high level of security, due to the parameters

and use of hash functions, WORS+ and FORS.

Simplicity – SPHINCS relies on well-studied security properties that have been previously

implemented in classical cryptography.

7.18.5. Disadvantages of SPHINCS+
Large Signature Size – SPHINCS+ has a large signature size compared to classical

algorithms.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 64 of 72

Complexity - SPHINCS+ requires more computations for signing and verification than some

classical signature schemes.

Parameters - While the ability to tune parameters in SPHINCS+ can be seen as an

advantage, it can also complicate the selection process and make it challenging to find the

right balance between security, performance, and signature size.

7.18.6. Key Terms
Entropy - Refers to the degree of randomness or uncertainty in a set of data. High entropy is

crucial for generating secure cryptographic keys. It makes keys hard to guess.

Merkle Tree - A Merkle tree is a tree data structure where each non-leaf node is the hash of

its children nodes' values, and each leaf node represents a hash of some data. The root of the

Merkle tree is a unique value that represents the combined hashes of all the data in the tree.

In SPHINCS+, the root of the Merkle tree is the public key of the SPHINCS+ scheme.

Figure 55: Merkle Tree Example

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 65 of 72

8. Conclusion
It’s no doubt that at this time, the future of cryptography will be reliant on Lattice-based

problems, especially after three of the four NIST competition winners being Lattice-based

algorithms in CRYSTALS-Kyber, CRYSTALS-Dilithium and Falcon. We can see with the

Ring-LWE and Module-LWE variants that optimisations and improvement are happening at

a fast rate.

Despite the influence of Lattice-based cryptography, it was refreshing to see SPHINCS+ gain

the last finalist spot, being a more classical algorithm than the others relying on hash

functions and Merkle Trees with WOTS+ and FORS. There has also seen to be a massive

increase of digital signature algorithms in the post-quantum space, with all the finalists except

Dilithium being digital signature based. These digital signatures show the relevance of hash

functions, as they are still a main component in generating signatures even in post-quantum

algorithms.

It is to be assumed that post-quantum algorithms will be harder to run, and take up more

space, but is that worth taking a small hit or the increased security it provides in the long run?

Are the performance drops as big as expected, or can a modern computer today run them

without any issue? That’s the aim of the benchmarks, to determine whether we would benefit

from moving to post-quantum cryptography worldwide as soon as possible.

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 66 of 72

9. Bibliography
Anon., CRYSTALS-Dilithium Algorithm Specifications and Supporting Documentation. Shi

Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsk, s.l.: s.n.

Chi, D., 2015. Lattice-Based Cryptography for Beginners, s.l.: DP Chi.

co, N. A. a., 2021. BIKE Bit Flipping Key Encapsulation, s.l.: s.n.

Emspak, J., 2022. Jesse Emspak. [Online]

Available at: https://www.space.com/31933-quantum-entanglement-action-at-a-distance.html

[Accessed 25 January 2023].

Ethereum, 2022. What are zero-knowledge proofs?, s.l.: Ethererum.

Geeksforgeeks, 2021. RSA and Digital Signatures. [Online]

Available at: https://www.geeksforgeeks.org/rsa-and-digital-signatures/

[Accessed 27 December 2022].

Geeksforgeeks, 2022. Non-Interactive Zero Knowledge Proof, s.l.: Geeksforgeeks.

Huang, Y., n.d. Public-Key Cryptography from new Multivariate Quadratic Assumptions, s.l.:

International Association for Cryptologic Research.

Java T Point, n.d. RSA Encryption Algorithm. [Online]

Available at: https://www.javatpoint.com/rsa-encryption-algorithm

[Accessed 27 December 2022].

Jean-Philippe Aumasson, D. J. B. W. B., 2022. SPHINCS+, s.l.: s.n.

Jintai Ding, M.-S. C. A. P. D. S., 2019. Rainbow, Santa Barbara: s.n.

Jon, 2021. SHA-3 Explained in Plain English. [Online]

Available at: https://chemejon.wordpress.com/2021/12/06/sha-3-explained-in-plain-english/

[Accessed 14 January 2023].

Joyce, D., 2016. What is the meaning of irreducible in algebra? s.l.:s.n.

Khan, S., n.d. What is the Twofish encryption algorithm?. [Online]

Available at: https://www.educative.io/answers/what-is-the-twofish-encryption-algorithm

[Accessed 20 January 2023].

Levasseur, A. D. &. K., 2021. Polynomial Rings. [Online]

Available at:

https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Applied_

Discrete_Structures_(Doerr_and_Levasseur)/16%3A_An_Introduction_to_Rings_and_Fields

/16.03%3A_Polynomial_Rings

[Accessed 2 March 2023].

Martin, D., 2022. https://sha256algorithm.com/. [Online]

Available at: https://sha256algorithm.com/

[Accessed 27 December 2022].

BENCHMARKING PRE/POST-QUANTUM ALGORITHMS

Page 67 of 72

Mathsisfun, n.d. Polynomials. [Online]

Available at: https://www.mathsisfun.com/algebra/polynomials.html

[Accessed 2 March 2023].

Metwalli, S. A., 2023. What Is Superposition?. [Online]

Available at: https://builtin.com/software-engineering-perspectives/superposition

[Accessed 25 January 2023].

Mustafeez, A. Z., 2015. What is CTR?. [Online]

Available at: https://www.educative.io/answers/what-is-ctr

[Accessed 27 December 2022].

NIST, 2022. Post-Quantum Cryptography , s.l.: NIST.

OBE, P. B. B., 2018. Everything You Wanted To Know about Integer Factorization, but Were

Afraid To Ask. [Online]

Available at: https://medium.com/coinmonks/integer-factorization-defining-the-limits-of-rsa-

cracking-71fc0675bc0e

[Accessed 27 12 2022].

Pierre-Alain Fouque, J. H. ,. K., 2020. Falcon: Fast-Fourier Lattice-based, s.l.: s.n.

Rakhade, K., 2020. Shor’s Algorithm (for Dummies). [Online]

Available at: https://kaustubhrakhade.medium.com/shors-factoring-algorithm-94a0796a13b1

[Accessed 30 December 2022].

Roberto Avanzi, J. B. L. D. E. K. T. L., 2021. CRYSTALS-Kyber Algorithm Specifications

And Supporting Documentation, s.l.: s.n.

Schneier, B., 2020. RSA-250 Factored. [Online]

Available at: https://www.schneier.com/blog/archives/2020/04/rsa-250_factore.html

[Accessed 27 December 2022].

Sidhpurwala, H., 2023. A Brief History of Cryptography. [Online]

Available at: https://www.redhat.com/en/blog/brief-history-cryptography

[Accessed 27 December 2022].

Singh, H., 2019. Code based Cryptography:, Delhi: Scientific Analysis Group.

University of Basel, 2020. Adding noise for completely secure communication. [Online]

Available at: https://www.sciencedaily.com/releases/2020/06/200611133116.htm

[Accessed 11 March 2023].

Vacca, J., 2014. Advanced Data Encryption. In: J. R. Vacca, ed. Cyber Security and IT

Infrastructure Protection. s.l.:Elsevier Inc, pp. 325-345.

Zaverucha, G., 2020. The Picnic Signature Algorithm, s.l.: s.n.

