BENCHMARKING PRE/POST-QUANTUM
CRYPTOGRAPHY

BY

Cavan Phelan
C00249198
17 April 2023

Page i of 26



Contents

L 0313 {076 L1 12 o) o SO P PP PRSPPI 1
2. Description of Submitted Project........ccccoiiiiiiiiiiiiiiiiie e 1
2.1, USer INtErface ......ocvviiiiiiiiiiic 1

2. 110 HOME PAZE .o 1
2.1.2.  Benchmarking Options Algorithm...........ccccoiiiiiiiiiiiii 2
2.1.3. Profiler SEleCtion ........cccceiiiiiiiiiiiiiiieie s 5

2.2, BenChmarking .......ccocuoiiiiiiiiiiiiiiie s 6
2.3 GLAPRING ..ot 7
2.4. Benchmarking the AIOTIthMS ..........cccoviiiiiiiiiici s 8
2.4.1.  Benchmark Variables ..........cccooiiiiiiiiiiiiccee e 8
2.4.2. Benchmark Parameters .........cccoooeeiiiiiiiiiiiiie e 9
2.4.3.  SEUUP ClaSS .eiutiiieieiieiiee ettt ettt ettt ne e 9
244, Benchmark ClIass .......cccoiiuieiiiiiiiiic e 10

2.5, Benchmark RESUILS. .....ccuiiiiiiiiiiiiieieese e 10
2.5.1.  Graphing Benchmark ReSults ...........c.ccoriiiiiiiiiiiiiicee e 11

2.6.  Getting Algorithm Selection to Benchmark ............cccooiiiiiiiiiiiie 13
2.7.  Showcasing Algorithm SECUTIILY.........ccccoiiiiiiiiiiici e 13
2.7.1.  Saving Data to @ File........ccooiiiiiiiiiiiii 14

3. Description of Conformance to Specification and Design ...........ccooeviiviiiiiiiiiiiennnn, 15
3.1.  Technology DIifferences ..........ccccoiiiiiiiiiiiiiiii e 15
3.2, Algorithm DIfferences.........cccooviiiiiiiiiiiiii e 15

4. Description Of LEAINING .......cccvviieiiiieieieiie e 16
4.1.  Technical Learning..........cccocviiieiiimiiiieiieiee s 16
41,1, USING MAVEN....oiiiiiiiiiiec ettt 16
4.1.2.  Using Java Micro-Benchmarking Harness ............cc.cccooviriinicnii i 16
4.1.3. Implementing post-quantum algorithms with Bouncy Castle. ............ccccceeeene 16
4.1.4.  CodiNG IN JAVA.....eiiiiiiiiiiici s 16

4.2, Personal Learning..........cccuiiieiiiiiiieiiiii et 16
42,1, PAlIBNCE .. .eiiiiiiiiiieitie s 16
4.2.2. ANOCAtING TIME ...ooouviiiieiiieiee et 17

5. ProJECt REVIEW ....oiiiiiiiiiiie e 17
5.1. Would I approach it differently? ..........ccccoiriiiiii e 17

Page ii 0of 26



5.2, Technolo@y CROICES ......cciiuiiiiiiiiiiie ittt snee e 17
5.3, Was MY Project @ SUCCESS? ....uuuiiiiiiiiiieiiiie it e sttt sine e nnneesnne s 21
6.  ACKNOWICAZEMENLS ... .eiiiiiiiiiiii ittt e be e 22

Page iii of 26



1. Introduction

The aim of this document is to provide an overview of the progress of my project. It will
include an analysis of what I had initially planned to do with what I have managed to do. It
will also serve as a time of self-reflection on what I have learned during this project and if
were to start fresh, how I would change my work ethic and structure to have my project in a
better condition.

It will describe the workings of my project, including some underlying code in which I am
proud to have managed to get working.

2. Description of Submitted Project
2.1.  User Interface

2.1.1. Home Page
Home Page

Home Graph Benchmarks Post-Quantum  Pre-Quantum

Please select a benchmarking option:

One Algorithm Two Algorithms

All Algorithms

Figure 1: Home menu

The above is the initial home menu when starting the application. The user will be presented
with multiple button options to run a certain number of algorithms.

The user also has the option to start graphing completed benchmarks.

Page 1 of 26



The post-quantum and pre-quantum buttons provide dropdowns linking the user to the source
developer pages of each algorithm.

2.1.2. Benchmarking Options Algorithm

If the user selects the ‘One Algorithm’ button they will be presented on a new page
containing a dropdown of which algorithm they wish to benchmark. Once a user has selected
their algorithm, they may hit run, but before the benchmark begins, they can enable some
profilers for extra debugging and information.

Home Page

Home Graph Benchmarks Post-Quantum  Pre-Quanium

Algorithm Benchmarking

Sphincs+

Run Benchmarks

Figure 2: Benchmarking 1 algorithm

Page 2 of 26



If the user selects the “Two Algorithms’ button they will be presented on a new page
containing two dropdowns of which algorithms, they wish to benchmark.

g Home Page

Home Graph Benchmarks Post-Quantum  Pre-Quantum

Algorithm Benchmarking

CRYSTALS-Kyber

Run Benchmarks

Figure 3:Benchmarking two algorithms

Page 3 of 26



If the user wants to run every benchmark and click “All benchmarks” they will be directed to
just a single button to begin the benchmarks.

Home Page

Home Graph Benchmarks Post-Quantum  Pre-Quantum

Run Benchmarks

Figure 4: All benchmarking options

Page 4 of 26



2.1.3. Profiler Selection

Before any of the benchmarks are run, clicking the ‘run’ buttons will prompt the users if they
want to enable any of the profilers. This will pop up for both algorithms if you want to
benchmark two, or if you are benchmarking all algorithms, this option will apply to all
benchmarks.

| £ Home Page = O >

Graph Benchmarks Post-Quantum  Pre-Quantum

This is for algorithim 1.

*MB* Make sure you are running as Administrator to use profilers.
COptional Profiles may increase benchmarking times.

¥ Include Stack Profiler

¥ Include GC Profiler

¥ Include ASM Profiler

Figure 5: Profiler options

The options are as follows:

Stack Profiler — Samples the call stack of the running benchmark. It helps identify which
methods in the call stack are consuming the most time. The profiler collects data on the
method calls and the time spent in each method. This can help in identifying performance
bottlenecks in the benchmark code.

Garbage Collector (GC) Profiler - Profiling the behaviour of the Java Garbage Collector
during the benchmark execution. It provides information on the time taken by the GC, the
number of GC cycles, and the amount of memory allocated and deallocated.

ASM Profiler - The ASM (Abstract Syntax Tree) Profiler in JMH is a profiler that uses the
ASM library to instrument the bytecode of the benchmark method. It helps in measuring the
number of instructions executed, the time taken by each instruction, and the number of
branches and loops executed during the benchmark run.

Page 5 0of 26



Once the user has confirmed the benchmarks will begin to run. It is to be noted that these
may increase benchmarking times.

2.2. Benchmarking
As the benchmarks are beginning, it will provide you information on the benchmark
parameters such as iteration amount and length, threads being used, and which benchmark is

being run.

VM options:

Blackhole mode: compiler (auto-detected, use -Djmh.blackhole.autoDete

Warmup: 1 iterations,
Measurement: 1 iterations
Timeout: 10 min per iteration
Threads:

Benchmark mode: Averac

Benchmark: Post_Quantum.HKyber.kl024AesEncapsulatedPrivateeyGen

Figure 6. Benchmarking Information

Below we can see the benchmarks in real-time being completed. It will let us know how far
into the benchmark we are, and the speed of the benchmarks being run, and which iterations
are being done. Note that in this example I am using only 1 warmup and measurement
iteration which will not provide a broad enough range to be accurate, this is only for
demonstration.

# Fork: 1 of 1

Warmup Iteration

Iteration 1: 49187.899 ns/op

67% complete, ETA 00:00:083

# F: un |:| ro I;I regs: I;I Ifl . Flly -1

. 707
07

274.707 nsfop

Result "Post_Quantum.Kyber.k768WrapHey":

—_

49107.899 ns/op

Page 6 of 26



Once the benchmark is fully complete it will post all the results to the console. Here we can
see the benchmarks being run, the mode of the benchmarks which is the average time in this
case, and the score of the benchmarks.

Benchmark Mode
o5t _Quantum sEncapsulated E en avgt

*ost_Quantum.HKyber ncaps Gen avgt

2gst_Quantum. K 1024 ( | avgt

Quantum. K
*ost_Quantum.

Quantum.

ulatedPrivateHeyGen avgt
Quantum e uvlatedPublil yGen avgt ns/op
0s5t_Quantum sHeyGen avgt ns/op

*ost_Quantum 8 {ey avgt 5] ns/op

Figure 7: Benchmark Results

2.3. Graphing

The user has the option to include their benchmarks in a graph. Once the user clicks to
display the graph, it will initially be empty, but upon clicking “Add File” they can add a
benchmark to the graph like below.

|| JMH Plotte = O
Benchmark Result
1
0.8
Selecta CSV file
06 T ——
Lookin: || [ QuantumBenchmarki...
0.4 f= gt B tes
= idea i
02 imark Results
5o
@
0.2 File Name
Files of Type:
04
Open Cancel
08 =
08
-1
- 08 06 04 0.2 [] 0.2 0.4 0.6 0.8 1
X Axis

[“AddFile | | Save Graph
e

Figure 8: Choosing a file to graph.

Page 7 of 26



The user can then add as many benchmarks as they want to graph, and it will look like the
following.

|£] JMH Plotter - (]

Benchmark Results

135,000
130,000
125,000
120,000
115,000
110,000
105,000
100,000

83,000 =e— testl.csv

Score
!
g
&

90,000
85,000
80,000
75,000
70,000
65,000
60,000

55,000

50,000

1 2 3 4
X Axis

Add File Save Graph

Figure 9: Graphed Benchmarks

The user can now save the graph by clicking the ‘Save Graph’ button and choosing where to
save the file.

2.4. Benchmarking the Algorithms

There are multiple components to setting up and configuring benchmarks, these components
being the benchmark variable, benchmark parameters, the setup class, and the benchmark
classes.

2.4.1. Benchmark Variables
These dictate the benchmarking modes, benchmarking types and how low long the
benchmarks are. For all algorithms, I use the same benchmarking variables.

arkMode (Mode . AverageTime)

nutTimelUnit (TimeUnit . NANDSECONDS)

ope.Benchmark)

whlic closs Falcon {

Figure 10: Benchmark variables

The current benchmark mode is calculating the average time of the benchmarks and that will
result in the score of that benchmark rather than its quickest or slowest score.

The output time unit refers to what unit the benchmarks will be shown as, so in this case they
will be shown in nanoseconds.

The warmup is a warmup iteration of the benchmark to optimise the benchmark before

Page 8 of 26



ranking the official score. I have three warmup iterations that run for three seconds each
before moving on to the measurement iterations. These are the recorded iterations, which is
why I run them for more iterations to get a more accurate score.

The fork indicates how many times the benchmarks will start over, in this case, it will run
through one set of their warmups and five measurements.

The state is configured to the benchmark scopes, meaning that each benchmark will have a
fresh state for benchmarking.

2.4.2. Benchmark Parameters

Parameters allow me to specify if [ want to run multiple different instances of a variable such
as a key length of plaintext size. In the image below, I am initialising a static int with the
parameters 256, 512, 1024 and 2048. This is then used to create plaintext of different sizes.
The benchmarks will start on a 256-byte plaintext and execute every benchmark, instead of
completing, it will start again, but move to the next parameter until all parameters are
complete. This allows me to test multiple key sizes and plaintext sizes without having to code
benchmarks for each size.

", "512", "1024",

Figure 11: Benchmark variables

2.4.3. Setup Class

This is where most of the initialising for the benchmarks takes place. I decided to make static
variables and define them inside the setup, to minimise the time spent doing it during
benchmarks so I can focus more on the algorithm’s goals.

falcon512KP = folco (); falconlB24KP = falco

f5125ig = Signature.ge ice( algorithm: "Falcon-512", provider: "BCPQC"); f10824Sig = Signature.getInstonce( algorithm: "Falcon-10824", provider: "BCPQC");

foleon512Signoture = falce an(); foleconl@24Signature = fal

Figure 12: Benchmark setup

In the above image I am creating the plaintext and randomising the bits, I am then creating
key pair generators with different security levels provided by the algorithm to then create a
key pair. Rather than rely on the benchmarks to call on one another, inside the setup I would
assign a variable to run the benchmarks to get assigned variables. It is important to note that
these don’t run the benchmarks as the setup is fully initialised before the benchmarks can
take place. The setup class is annotated with the @Setup annotation.

Page 9 of 26



2.4.4. Benchmark Class

This is where the real benchmarking takes place, where it will execute and keep track of how
fast the operations defined take.

falconb12KP.getP

plaintext, off: 8, plaintext.length);

Figure 13: Falcon Sign Example

In the example above, we are using falcon512Sign() to create a signature. Inside this
benchmark, we want to calculate how long it takes to initialise the cipher and create the
signature. Since I didn’t want benchmarks calling other benchmarks, I ended up allowing the
benchmarks to return values, which is good due to it being more efficient on the code, and it
allows me to assign a variable to run these benchmarks to reuse them in other benchmarks,
without the benchmarks running yet since it’s all assigned in the setup phase.

2.5. Benchmark Results

By default, the benchmarks are run, and the results are just outputted to the console, but to
better compare algorithms I would need to save these easily. When a benchmark is selected it
runs through a switch statement until it finds its algorithm name, then I am adding on to the
JMH options to include a results file to be saved at a specified location.

s Benchmar incsPlus_Benchmarks.

Options options = builder

~(options).r

Figure 14: Sphincs+ CSV

Page 10 of 26



In the above, when “Sphincs+” is found, I can specify that I want to save the file, and where I
want it saved. For the profilers, I have Boolean statements that are triggered, which will add
to the benchmark builder to add the profiler.

if (includeStackProfiler) {

Figure 15: Adding Profiler

The results are being saved to a CSV file as they’re compatible with JMH and Excel. The
results save to the file in the same format as of which the printout is to the console.

A B C D E F G
1 |Benchmark Maode Threads Samples Score Score Error (99.9%) Unit
2 |Testing.Cavan.k512EncapsulatedKeyGen |avgt 16 1 130104.3 NaM nsfop
3 |Testing.Cavan.k312KeyGen avgt 16 1 21122 MNalN nsfop
4 |Testing.Cavan.k312UnwrapKey avgt 16 1 70978.07 NaN nsfop
5 |Testing.Cavan.k312WrapKey avgt 16 1 61773.21 NalN nsfop

Figure 16:CSV File

2.5.1. Graphing Benchmark Results
To graph the results, it would require me to parse the result files, search for the score column
and then update the graph with the scores every time a new graph is added.

I started by creating a blank canvas with no data, as I can update the canvas when needed.

chart = new X

Figure 17: Creating Blank Graph

Page 11 of 26



Once a user selected results to graph, I parsed the file looking for the ‘score’ and if it was
found it was extracting all the data until it hit an empty cell again and then stop. The scores
are stored in an array to layer and are painted on the chart.

(int 1 = 8; 1 <« headerRow.length; i+) {
if (headerRowl[il].equalsIgnoreCase( amotherString: "score")) {

scoreColumnIndex = i;

if (scoreColumnIndex == -1) {

int rowlndex = 1;

for (Stringl] record : records) {

xData.add ouble) rowlndex);
yData.add(Double.parse ble(record[scoreColumnIndex])];

rowlndex++;

Figure 18: File Parse

This would then call the function I created which repaints the graph with the updated arrays
and plots them on the graph.

Figure 19: Update Chard Method

Saving the graph was simply using a Bitmap Encoder to save the file to a path specified by
the user.

(chart, outputFile.ge solutePath(), BitmapEncoder.BitmapFormat.PNG);

Figure 20: Saving Graph

Page 12 of 26



2.6. Getting Algorithm Selection to Benchmark

I stored the names of each algorithm into a string array, with the names equalling the options
provided in the dropdown box to the user. The selected algorithm name would then run
through a switch statement and stop when it found a match. It would then run the main
method of the algorithm before then running and saving the benchmarks.

11(algorithm1)) {

t-Quantum/Falcon Benchma alcon_Benchmarks

Figure 21: Switch Statement to run benchmarks.

2.7.  Showcasing Algorithm Security

Trying to showcase the security differences such as key or signature lengths wasn’t possible
due to the benchmarks being isolated and reset. This led to me implementing the algorithms
outside of the benchmarks so that I could save parameters such as encoded/decoded keys and
signatures. That is why in the switch statement above, | am executing the main method of that
algorithm first to quickly generate the keys and other parameters. The main method is
creating the folder structures and saving the files and their contents.

» Cavan Phelan » I|deaProjects > QuantumBenchmarking » Benchmark Results > Post-Quantum » SphincsPlus Benchmarks

MName b Date modified Type Size
a I Keys 7/04/2 3 File folder
B Plaintext 2 3 File folder
Signatures 3 File folder

SignatureVerification y 3 File folder

11 SphincsPlus_Benchmark:

Figure 22: Folder Layout

Page 13 of 26



2.7.1. Saving Data to a File

I wanted to showcase the encoded and decoded variations of each parameter. This meant in
some cases like keypairs, I would have to convert the Key-Pair variables into Bytes and then
write the bytes to a string and save the string.

File parent = file.ge

if (!parent.e

ouldn't create directory: " + parent);

FileWriter new FileWrite '-':_"Fi-LE!_. append:
writer.wri

writer.cl

y publicKey =

y privateKey

String(publicKey.ge

g(privateKey.g

Figure 26: Decoded Public Key

Page 14 of 26



3. Description of Conformance to Specification and Design

I believe a lot has changed from the original Functional Specification I had designed. I
believe the structure of the Ul stayed someone similar but the further I progressed into the
project, the more I discovered and changed what I was using and the way I was using them.

I will first discuss the changes in technologies, then the algorithms in which I wanted to
benchmark and then any other tasks I’ve since added.

3.1. Technology Differences

Bouncy-Castle - Although I did specify the use of Bouncy-Castle, I didn’t specify that I was
mostly using the beta Post-Quantum Cryptography (PQC) of Bouncy-Castle, which is
required to implement post-quantum algorithms.

Java Universal Network/Graph (JUNG) — I had initially planned to use this to graph my
benchmarks to get a visual representation of the benchmarked data. I was having some
difficulties in getting this to work so I decided to use X-Chart instead, which was a much
easier tool to use.

Maven — I found using Eclipse a little hard, as it’s not visually pleasing and connecting the

right files can lead to a lot of issues, to begin with. Instead of just using Java, I used Maven

which helped me automatically build and compile my project and helped me organise it in a
better manner.

OpenCSYV -1 hadn’t researched how to parse files initially, but when it finally came to that
point in the project, I tried a couple of CSV file readers, with this being the only one to work.

3.2.  Algorithm Differences

I initially planned to benchmark five pre-quantum and five post-quantum algorithms.
Pre-Quantum: AES, MD5, SHA-256, RSA, El Gamal.
Post-Quantum: CRYSTALS-Kyber, CRY STALS-Dilithium, Sphincs+, SIKE, PICNIC.

I instead ended up benchmarking five pre-quantum algorithms and seven post-quantum
algorithms.

Pre-Quantum: AES, RSA, TwoFish, SHA-256, SHA-3

Post-Quantum: CRYSTALS-Kyber, CRYSTALS-Dilithium, Sphincs+, BIKE, PICNIC,
Falcon, Rainbow

MDS — This is a broken algorithm but is still used for checksums, but I felt I could implement
a more relative algorithm instead.

El Gamal — There isn’t anything wrong with El Gamal, it’s just that TwoFish seemed like a
more interesting option to benchmark.

SHA-3 — Instead of MD35, I felt like the relatively new SHA-3 would be a good algorithm to
cover as it will probably become the next new hashing standard to be used worldwide.

SIKE — SIKE was initially implemented in the Bouncy Castle library but was then removed
due to the algorithm being attacked successfully. Instead, I went for BIKE as at the time,
there was a limited number of post-quantum algorithms to choose from.

Page 15 of 26



Falcon & Rainbow — I couldn’t decide which algorithms to replace with SIKE, so I initialled
picked Rainbow but there was a bug within the Bouncy Castle library, so I had to turn to
Falcon. After a few months, there was a bug fix, so I decided to implement Rainbow anyway
because of the name.

All of the other algorithms that I have kept, as of different backgrounds and types so keeping
a variety of them help with benchmarking them.

4. Description of Learning

4.1. Technical Learning
4.1.1. Using Maven

I initially only started using Maven because of its popularity of it when I searched for how to
start this project. This led to me not knowing how to use it, especially the pom file, where
you link all, your project dependencies too. After a lot of frustration, I finally learned how to
utilise Maven and use it to further organise my project and keep track of tasks.

4.1.2. Using Java Micro-Benchmarking Harness

I thought benchmarking would be quite easy, but unfortunately, no one has much information
on benchmarking algorithms like I am, so I was stuck with hardcoding every single piece of
my code. Instead of researching online, I instead started trying different methods that came to
mind, finally coming to the system I have now where I can create static variables and assign
them outside benchmarks to maximize performance impact. It also allows me to prevent the
benchmarks from calling one another in other to proceed, instead, I can run them inside the
setup to initialise static variables to include in the benchmarks.

4.1.3. Implementing post-quantum algorithms with Bouncy Castle.

Another issue | was having was the lack of information on implementing these algorithms
with BC. There is next to no information on this, so I had to extensively research to find
information on the implementation of the algorithms,

4.1.4. Coding in Java

Having not coded in Java in two years, it was safe to say I was rusty on how to even start
coding a simple program. After some research and a lot of practice, | was somewhat fluent in
Java and got into a good uninterrupted workflow.

All of these contribute to increasing my technical abilities. Not only has it increased my
knowledge of Java, but I’ve also learned a lot about cryptographic algorithms and their
implementations and limitation. I’ve learned the restrictions when benchmarking algorithms
and potential optimisation I need to make to get more accurate results. Since a lot of my work
is coding, my typing speed and accuracy have improved too.

4.2. Personal Learning

4.2.1. Patience

Having to look at complex arithmetic and equations took a lot of energy out of me, and often
more than not I would need to re-read sentences over and over to just wrap my head around
certain concepts. Being patient allowed me to finally take on the information needed.

Page 16 of 26



4.2.2. Allocating Time

I quickly learned the importance of setting myself up to work on the project for a couple of
hours a day to maintain a steady workflow throughout the year. I also overestimated how long
each task would take me to achieve, just to give myself enough time in case I needed that
extra work and not have to worry about time constraints.

5. Project Review
5.1.  Would I approach it differently?

I feel as though overall my project is where I wanted it to be and that it’s in good shape. One
of my biggest mistakes was leaving it quite late to start on the post-quantum algorithms. I left
them until last and I started to struggle with time as I had to pressure myself into learning the
post-quantum algorithms and problems. Instead, I would have started with learning and
writing up about the post-quantum algorithms at the start of the year when it is quieter and
stress-free, this means you would get the hard, intensive work out of the way first. I didn’t
account for the lack of good information, so I wasted a lot of time on that. I underestimated
the complexity of understanding and implementing the post-quantum algorithms.

5.2. Technology Choices

I initially believed my technology choice at the start was what was best for my project, but
that quickly changed once I started trying to integrate them into my project. I started running
into issues and had to try multiple similar plugins. Reviewing my final technology choices
now, I believe I found a good balance that works and allows me to implement my project
without issues.

5.3. Testing Results

Here is a summary of my findings, showcasing the results of each algorithm. Since some
algorithms can have up to two-hundred benchmarks done for five categories, I will provide
the average time of each category and not even the benchmark instance.

I will be using three warmup iterations for one second each, and five measurement iterations
for one second each. These benchmarks would be processed for longer, but the PICNIC
algorithm alone took two hours for benchmarking five iterations for five seconds each and
my parents weren’t too happy with the electricity bill.

Disclaimer: I am missing the SPHINCS+ benchmarks as I ran out of time to organise them to
display.

5.3.3. Falcon Results

These are the benchmarks for the two Falcon parameters. We can clearly see that increasing
the security of this algorithm comes with large impacts on performance, which may make it
unfeasible to use in most cases, the Falcon-512 parameter is probably worth it more as it’s
faster and still provides a high level of security.

Page 17 of 26



Benchmark

Post_Quantum.Falcon.falcon312KeyGeneration
Post_Quantum.Falcon.falcon512Sign
Post_Quantum.Falcon.falcons12Verify

Post_Quantum.Falcon.falcon1024KeyGeneration
Post_Quantum.Falcon.falcon1024Sign
Post_Quantum.Falcon.falcon1024Verify

Figure 27: Falcon Results

5.3.4. Picnic Results

Score
" 32692506.41

¥ 2871012.979
" 173128.6221 Total Score

Y7708 i
1 91770858.85)

35736648

6054446.962
"316811.9648 Total Score

98142117.8

As we can see, the higher security we try to use in Picnic, the longer it takes to run the
algorithms, however, the differences between L1FS and LSFULL aren’t that bad, and it might

be worth considering testing out all of these algorithms to find the best fit.

Benchmark
Post_Quantum.Picnic.l1fsKeyGeneration
Post_Quantum.Picnic.l1fsSign
Post_Quantum.Picnic.l1fsVerify

Benchmark
Post_Quantum.Picnic.|3fsKeyGeneration
Post_Quantum.Picnic.I3fsSign
Post_Quantum.Picnic.I3fsVerify

Benchmark
Post_Quantum.Picnic.I5fsKeyGeneration
Post_Quantum.Picnic.I5fsSign
Post_Quantum.Picnic.I5fsVerify

Score
273252.3
461866749.4
301141355.6 Total Score
763281357

Score
170997.7844
463380244.6
298997479 Total Score
762548721

Score
323928.2014
554963172.2
355569496.5 Total Score
910856597

5.3.5. CRYSTALS-Dilithium Results

Benchmark
Post_Quantum.Picnic.|1fullKeyGeneration
Post_Quantum.Picnic.|1fullSign
Post_Quantum.Picnic.|1fullverify

Benchmark
Post_Quantum.Picnic.I3fullKeyGeneration
Post_Quantum.Picnic.3fullSign
Post_Quantum.Picnic.I3fullverify

Benchmark
Post_Quantum.Picnic.|5fullKeyGeneration
Post_Quantum.Picnic.|5fullSign
Post_Quantum.Picnic.|5fullverify

Score
273243.5099
460719535.3
302114730.1 Total Score
763107509

Score
268406.9664
464675217.4
374485955 Total Score
839429579

Score

320469.6858

540609928.4

359834299.3 Total Score
900764697

We can quickly see that Dilithium with AES takes a lot longer than on its own, but with
hashing, you do get a very high level of security, although at this rate you’re probably best off
using AES on its own rather than Dilithium, or even Dilithium on its own to save

performance.

Benchmark
Post_Quantum.Dilithium.d2AesKeyGeneration

Post_Quantum.Dilithium.d2AesPrivateKeyRecovery
Post_Quantum.Dilithium.d2AesPublicKeyRecavery

Post_Quantum.Dilithium.d2AesSign
Post_Quantum.Dilithium.d2AesVerify

Benchmark
Post_Quantum.Dilithium.d3AesKeyGeneration

Post_Quantum.Dilithium.d3AesPrivateKeyRecovery
Post_Quantum.Dilithium.d3AesPublicKeyRecovery

Post_Quantum.Dilithium.d3AessSign
Post_Quantum.Dilithium.d3AesVerify

Benchmark
Post_Quantum.Dilithium.d5AesKeyGeneration

Post_Quantum.Dilithium.d5AesPrivateKeyRecovery
Post_Quantum.Dilithium.dsAesPublicKeyRecovery

Post_Quantum.Dilithium.d5AesSign
Post_Quantum.Dilithium.d5AesVerify

Score
666157
78395.13
56412.26
1369307
797980.3 Total Score
3468851.69

Score
1359256
121800
71796.84
4825641
1734534 Total Score
8113427.84

Score
2850128
178026.6
97976.52
6291543
2713209 Total Score
12130883.1

Benchmark

Post_Quantum.Dilithium.d2KeyGeneration
Post_Quantum.
Post_Quantum.
Post_Quantum. um.d25ign

Post_Quantum.Dilithium.d2Verify

Benchmark

Post_Quantum.Dili
Post_Quantum.
Post_Quantum.
Post_Quantum. um.d3Sign

Post_Quantum.Dilithium.d3Verify

hium.d3KeyGeneration

Benchmark

Post_Quantum.Di
Post_Quantum.
Post_Quantum.
Post_Quantum. hium.d5Sign

Post_Quantum.Dilithium.dsVerify

hium.d5KeyGeneration

um.d2PrivateKeyRecovery
lithium.d2PublicKeyRecovery

um.d3PrivateKeyRecovery
um.d3PublicKeyRecovery

ium.d5PrivateKeyRecovery
um.dsPublickeyRecovery

Score
326004.7
81975.73
53294.81
1561200
393273.7 Total Score
2415748.94

Score
572176.6
174450
87989.34
3204359
800432.2 Total Score
1 5239407.14

Score
964502
144286
65805.60
2511678
975009.8 Total Score
4661681.46

Page 18 of 26



5.3.6. CRYSTALS-Kyber Results

Unlike Dilithium, we don’t see as much of a performance gap when using Kyber with AES,
although here the Kyber-768 Aes benchmark is higher than what is expected from the other
benchmarks. This could be due to the awkward key size and the need for padding to wrap the
key. Despite this, Kyber is surprisingly efficient.

Benchmark Score Benchmark Score
Post_Quantum.Kyber.k1024AesEncapsulatedPrivateKeyGen 19037.61953 Post_Quantum.Kyber.k1024EncapsulatedPrivatekeyGen 133299.1
Post_Quantum.Kyber.k1024AesEncapsulatedPublickeyGen 273122.7178 Post_Quantum.Kyber.k1024EncapsulatedPublickeyGen 124591.3
Post_Quantum.Kyber.k1024AesKeyGen 21570.82276 Post_Quantum.Kyber.k1024KeyGen 107380.1
Post_Quantum.Kyber.k1024AesUnwrapKey 150021.5359 Post_Quantum.Kyber.k1024UnwrapKey 149120.6
Post_Quantum.Kyber.k1024AesWrapKey 120077.615 Total Score Post_Quantum.Kyber.k1024WrapKey 122276.9 Total Score
583830.311 636677.9366
Benchmark Score Benchmark Score
Post_Quantum.Kyber.k512AesEncapsulatedPrivateKeyGen 95848.43041 Post_Quantum.Kyber.k512EncapsulatedPrivateKeyGen 45342.46
Post_Quantum.Kyber.k512AesEncapsulatedPublicKeyGen 102465.2261 Post_Quantum.Kyber.k512EncapsulatedPublickeyGen 41920.67
Post_Quantum.Kyber.k512AeskeyGen 80603.32677 Post_Quantum.Kyber.k512KeyGen 42759.67
Post_Quantum.Kyber.k512AesUnwrapKey 107428.7574 Post_Quantum.Kyber.k512UnwrapKey 64727.43
Post_Quantum.Kyber.k512AesWrapKey 65334.00308 Total Score Post_Quantum.Kyber.k512WrapKey 53453.2 Total Score
451679.7437 248203.4229
Benchmark Score Benchmark Score
Post_Quantum.Kyber.k768AesEncapsulatedPrivateKeyGen 159246.824 Post_Quantum.Kyber.k768EncapsulatedPrivateKeyGen 89649.88
Post_Quantum.Kyber.k768AesEncapsulatedPublickeyGen 146878.8827 Post_Quantum.Kyber.k768EncapsulatedPublickeyGen 84215.36
Post_Quantum.Kyber.k768AesKeyGen 130934.8335 Post_Quantum.Kyber.k768KeyGen 72974.52
Post_Quantum.Kyber.k768AesUnwrapKey 156686.959 Post_Quantum.Kyber.k768UnwrapKey 99351.92
Post_Quantum.Kyber.k768AesWrapKey 144180.7919 Total Score Post_Quantum.Kyber.k768WrapKey 93620.51 Total Score
737928.2911 439812.1954

5.3.7. BIKE Results

We can quickly compare the BIKE results to the Kyber results, which provide the same
functions, but obviously implemented in different ways. We can see that BIKE is way more
expensive that Kyber, but BIKE is notorious for being slow, but with this comes a high level
of security as the key sizes are large, but a performance hit this high does not seem worth it as
of now.

Benchmark Score Benchmark Score
Post_Quantum.BIKE.bike128KeyEncapsulation 22571169.08 Post_Quantum.BIKE.bike192KeyEncapsulation 57360313
Post_Quantum.BIKE.bike128KeyGenerator 6826869.641 Post_Quantum.BIKE.bike192KeyGenerator 28921416
Post_Quantum.BIKE.bikel28UnwrapKey 19230001.3 Post_Quantum.BIKE.bike192UnwrapKey 54915226
Post_Quantum.BIKE.bike128WrapKey 458926.3029 Total Score Post_Quantum.BIKE.bike192WrapKey 1597239 Total Score
49086966.32 142794193.8
Benchmark Score lII
Post_Quantum.BIKE.bike256KeyEncapsulation 124749974.3
Post_Quantum.BIKE.bike256KeyGenerator 82065015.38
Post_Quantum.BIKE.bike256UnwrapKey 128277031.3
Post_Quantum.BIKE.bike256WrapKey 3551253.851 Total Score
338643274.8

5.3.8. Rainbow Results

As we can see that the performances here vary a lot, especially between Rainbow 3 and 5, but
this is expected as the key and signatures sizes are a lot bigger. However, I think in terms of
performance and security, Rainbow is a well-rounded candidate.

Page 19 of 26



Benchmark
Post_Quantum.Rainbow.r3CircumKeyGeneration
Post_Quantum.Rainbow.r3CircumSign
Post_Quantum.Rainbow.r3CircumVerify

Benchmark
Post_Quantum.Rainbow.r3ClassicKeyGeneration
Post_Quantum.Rainbow.r3ClassicSign
Post_Quantum.Rainbow.r3ClassicVerify

Benchmark
Post_Quantum.Rainbow.r3CompKeyGeneration
Post_Quantum.Rainbow.r3CompSign
Post_Quantum.Rainbow.r3CompVerify

Score

284729168.8

27046828.14

37491379.38 Total Score
349267376

Score

285948237.5

26513792.44

6623978.263 Total Score
319086008

Score
407933433.3
21385732.33
30173169.87 Total Score
459492336

5.3.9. AES Counter Results

Benchmark
Post_Quantum.Rainbow.r5CircumKeyGeneration
Post_Quantum.Rainbow.r5CircumsSign
Post_Quantum.Rainbow.r5CircumVerify

Post_Quantum.Rainbow.r5ClassicKeyGeneration
Post_Quantum.Rainbow.r5ClassicSign
Post_Quantum.Rainbow.r5ClassicVerify

Benchmark
Post_Quantum.Rainbow.r5CompKeyGeneration
Post_Quantum.Rainbow.r5CompSign
Post_Quantum.Rainbow.r5CompVerify

Score

633205787.5
104439471
83281482.37 Total Score
820926740.9

761535762.5

100381782.5

12398746.31 Total Score
874316291.3

897303887.5

99008836.36

82197356.25 Total Score
1078510080

Disclaimer: I didn’t randomise the plaintext during the benchmark, so encryption is a lot
faster than it should be. Besides this, it is one of the most used algorithms to date, but
unfortunately will be rendered useless by quantum computing.

Pre_Cuantum.AES_CTR.keyGeneration
Pre_Quantum.AES_CTR.encryption
Pre_Cuantum.AES _CTR.decryption

¥ 36897.84
¥ 116.9319
¥ 133.0846 Total Score

37147.86
1

5.3.10. SHA-256 with ECDSA Results

Already we can see why hash functions, even though classic algorithms, will still play a high
part in quantum cryptography, and why a lot of post-quantum algorithms utilise SHA-2 or
SHA-3 in some way. Since there is no decryption or reversals, hashing is extremely fast,
whilst still providing good security levels. However, it may be recommended to start using
higher keys once quantum computers release to combat the potential danger,

Benchmark Score
Pre_Quantum.SHA256_ ECDSA.ecdsaSign 72249005
Pre_Quantum.SHA256_ ECDSA.ecdsaVerify 72631913
Pre_Quantum.SHA256_ ECDSA.keyGeneration 72201062
Pre_Quantum.SHA256 ECDSA.sha256Hashing ¥ 55273.1 Total Score
7137253.1

5.3.11. RSA Results

As we can see, RSA is a relatively fast algorithm, as long as it’s not dealing with digital
signatures. RSA is quick with encryption, but quick slow decrypting and usually is used with
other algorithms to speed this up.

Page 20 of 26



Benchmark Score

Pre_Quantum.RSA.generatekey i 5486734795
Pre_Quantum.RSA.encrypt ¥ 336486.0697
Pre_Quantum.RSA.decrypt i 18076452.7
Pre_Quantum.RSA.sign ¥ 18179199.5
Pre_Quantum.RSA.verify ¥ 396890.7093 Total Score

5523723824
5.3.12. Sha-3 Results

We can see the benefits of using SHA-3 over the SHA-2 family like SHA-256. The SHA-3
algorithm is using a 512-bit key, so not only provides more security but also maintains the
high performance of SHA-2. SHA-2 is still more popular due to the new age of SHA-3, but in
the future SHA-3 will probably be implemented nearly everywhere.

Benchmark Score
Pre_Quantum.5ha3.sha3Hashing ¥ 55936.75
Pre_Quantum.Sha3.sha3KeyGeneration " 2255704
Pre_Quantum.5ha3.sha3sign ¥ 2239423
Pre_Quantum.Sha3.sha3Verify " 2632245 Total Scon
J183308

.

5.3.13. TwoFish Results

TwoFish is a reliable algorithm that is very quick due to its high optimisation. It is a small
algorithm and due to this has small key sizes, so it prioritising performance over security.

1Benchmark Score
Pre_Quantum.TwoFish.keyGeneration 736799950
Pre_Quantum.TwoFish.encrypt '1?5052_4
Pre_Quantum.TwoFish.decrypt " 1umna
Pre_Quantum.TwoFish.generateMAC ¥ 121225.6 Total Score

37274349

5.4. Was My Project a Success?

I believe my project was a success. [’ve implemented everything I hoped to include, even
introducing an extra two post-quantum algorithms I initially didn’t consider. I haven’t
encountered any final issues with my project. The only other feature I would have loved is to
run the program through an executable JAR file, unfortunately, this was too troublesome. I
believe I made the correct decisions, albeit not obvious immediately at times.

The main goal of my project was to answer whether we should switch to quantum algorithms
sooner rather than later. I believe if my project provided a solid foundation towards an answer
then it was a success. So, do I believe we should make the jump to post-quantum
cryptography now? Yes, and no. Whilst I am happy to sacrifice some performance over
security, it’s not always feasible in every situation. I believe we should make the jump
regarding some aspects of our lives, such as secure communications like texting or passwords

Page 21 of 26



and file storage. These don’t need to be necessarily quick; we would rather have the extra
security so it would make sense to implement them in these fields. About Wi-Fi
communication, phone calls, or anything that needs to be in real-time, I believe that making
that jump isn’t worth the performance drop-off. There is a large performance difference
between the eras of cryptography, one that a modern computer yet cannot catch up to be on
par with the performance levels we have with classic algorithms now. I think in couple more
years given more advancements in computers on the algorithms themselves, we can fully
become quantum resistant.

6. Acknowledgements
I would like to thank my project supervisor Paul Barry for his help throughout the project and
the friendly chats we had every week.

I would also like to thank Conor McKenna, for reminding me that no matter how hard my
project gets, and how much I may struggle, I will never feel the pain of being a Tottenham
fan.

Page 22 of 26



I declare that all material in this submission, e.g. thesis/essay/project/assignment, is entirely
my own work except where duly acknowledged. I have cited the sources of all quotations,
paraphrases, summaries of information, tables, diagrams, or other material, including
software and other electronic media in which intellectual property rights may reside. I have
provided a complete bibliography of all works and sources used in the preparation of this
submission I understand that failure to comply with the Institute’s regulations governing
plagiarism constitutes a serious offence.

Student Name : Cavan Phelan
Student Number: C00249198

Student Signature: Cavan Phelan

Page 23 of 26



