
Page i of 26

BENCHMARKING PRE/POST-QUANTUM

CRYPTOGRAPHY

BY

Cavan Phelan

C00249198

17 April 2023

Page ii of 26

Contents
1. Introduction .. 1

2. Description of Submitted Project ... 1

2.1. User Interface .. 1

2.1.1. Home Page ... 1

2.1.2. Benchmarking Options Algorithm ... 2

2.1.3. Profiler Selection ... 5

2.2. Benchmarking ... 6

2.3. Graphing .. 7

2.4. Benchmarking the Algorithms .. 8

2.4.1. Benchmark Variables ... 8

2.4.2. Benchmark Parameters .. 9

2.4.3. Setup Class ... 9

2.4.4. Benchmark Class ... 10

2.5. Benchmark Results .. 10

2.5.1. Graphing Benchmark Results .. 11

2.6. Getting Algorithm Selection to Benchmark .. 13

2.7. Showcasing Algorithm Security .. 13

2.7.1. Saving Data to a File .. 14

3. Description of Conformance to Specification and Design .. 15

3.1. Technology Differences .. 15

3.2. Algorithm Differences ... 15

4. Description of Learning ... 16

4.1. Technical Learning .. 16

4.1.1. Using Maven .. 16

4.1.2. Using Java Micro-Benchmarking Harness .. 16

4.1.3. Implementing post-quantum algorithms with Bouncy Castle. 16

4.1.4. Coding in Java.. 16

4.2. Personal Learning .. 16

4.2.1. Patience .. 16

4.2.2. Allocating Time ... 17

5. Project Review ... 17

5.1. Would I approach it differently? ... 17

Page iii of 26

5.2. Technology Choices .. 17

5.3. Was My Project a Success? ... 21

6. Acknowledgements .. 22

Page 1 of 26

1. Introduction
The aim of this document is to provide an overview of the progress of my project. It will

include an analysis of what I had initially planned to do with what I have managed to do. It

will also serve as a time of self-reflection on what I have learned during this project and if I

were to start fresh, how I would change my work ethic and structure to have my project in a

better condition.

It will describe the workings of my project, including some underlying code in which I am

proud to have managed to get working.

2. Description of Submitted Project

2.1. User Interface

2.1.1. Home Page

Figure 1: Home menu

The above is the initial home menu when starting the application. The user will be presented

with multiple button options to run a certain number of algorithms.

The user also has the option to start graphing completed benchmarks.

Page 2 of 26

The post-quantum and pre-quantum buttons provide dropdowns linking the user to the source

developer pages of each algorithm.

2.1.2. Benchmarking Options Algorithm
If the user selects the ‘One Algorithm’ button they will be presented on a new page

containing a dropdown of which algorithm they wish to benchmark. Once a user has selected

their algorithm, they may hit run, but before the benchmark begins, they can enable some

profilers for extra debugging and information.

Figure 2: Benchmarking 1 algorithm

Page 3 of 26

If the user selects the ‘Two Algorithms’ button they will be presented on a new page

containing two dropdowns of which algorithms, they wish to benchmark.

Figure 3:Benchmarking two algorithms

Page 4 of 26

If the user wants to run every benchmark and click “All benchmarks” they will be directed to

just a single button to begin the benchmarks.

Figure 4: All benchmarking options

Page 5 of 26

2.1.3. Profiler Selection
Before any of the benchmarks are run, clicking the ‘run’ buttons will prompt the users if they

want to enable any of the profilers. This will pop up for both algorithms if you want to

benchmark two, or if you are benchmarking all algorithms, this option will apply to all

benchmarks.

Figure 5: Profiler options

The options are as follows:

Stack Profiler – Samples the call stack of the running benchmark. It helps identify which

methods in the call stack are consuming the most time. The profiler collects data on the

method calls and the time spent in each method. This can help in identifying performance

bottlenecks in the benchmark code.

Garbage Collector (GC) Profiler - Profiling the behaviour of the Java Garbage Collector

during the benchmark execution. It provides information on the time taken by the GC, the

number of GC cycles, and the amount of memory allocated and deallocated.

ASM Profiler - The ASM (Abstract Syntax Tree) Profiler in JMH is a profiler that uses the

ASM library to instrument the bytecode of the benchmark method. It helps in measuring the

number of instructions executed, the time taken by each instruction, and the number of

branches and loops executed during the benchmark run.

Page 6 of 26

Once the user has confirmed the benchmarks will begin to run. It is to be noted that these

may increase benchmarking times.

2.2. Benchmarking
As the benchmarks are beginning, it will provide you information on the benchmark

parameters such as iteration amount and length, threads being used, and which benchmark is

being run.

Figure 6: Benchmarking Information

Below we can see the benchmarks in real-time being completed. It will let us know how far

into the benchmark we are, and the speed of the benchmarks being run, and which iterations

are being done. Note that in this example I am using only 1 warmup and measurement

iteration which will not provide a broad enough range to be accurate, this is only for

demonstration.

Page 7 of 26

Once the benchmark is fully complete it will post all the results to the console. Here we can

see the benchmarks being run, the mode of the benchmarks which is the average time in this

case, and the score of the benchmarks.

Figure 7: Benchmark Results

2.3. Graphing
The user has the option to include their benchmarks in a graph. Once the user clicks to

display the graph, it will initially be empty, but upon clicking “Add File” they can add a

benchmark to the graph like below.

Figure 8: Choosing a file to graph.

Page 8 of 26

The user can then add as many benchmarks as they want to graph, and it will look like the

following.

Figure 9: Graphed Benchmarks

The user can now save the graph by clicking the ‘Save Graph’ button and choosing where to

save the file.

2.4. Benchmarking the Algorithms
There are multiple components to setting up and configuring benchmarks, these components

being the benchmark variable, benchmark parameters, the setup class, and the benchmark

classes.

2.4.1. Benchmark Variables
These dictate the benchmarking modes, benchmarking types and how low long the

benchmarks are. For all algorithms, I use the same benchmarking variables.

Figure 10: Benchmark variables

The current benchmark mode is calculating the average time of the benchmarks and that will

result in the score of that benchmark rather than its quickest or slowest score.

The output time unit refers to what unit the benchmarks will be shown as, so in this case they

will be shown in nanoseconds.

The warmup is a warmup iteration of the benchmark to optimise the benchmark before

Page 9 of 26

ranking the official score. I have three warmup iterations that run for three seconds each

before moving on to the measurement iterations. These are the recorded iterations, which is

why I run them for more iterations to get a more accurate score.

The fork indicates how many times the benchmarks will start over, in this case, it will run

through one set of their warmups and five measurements.

The state is configured to the benchmark scopes, meaning that each benchmark will have a

fresh state for benchmarking.

2.4.2. Benchmark Parameters
Parameters allow me to specify if I want to run multiple different instances of a variable such

as a key length of plaintext size. In the image below, I am initialising a static int with the

parameters 256, 512, 1024 and 2048. This is then used to create plaintext of different sizes.

The benchmarks will start on a 256-byte plaintext and execute every benchmark, instead of

completing, it will start again, but move to the next parameter until all parameters are

complete. This allows me to test multiple key sizes and plaintext sizes without having to code

benchmarks for each size.

Figure 11: Benchmark variables

2.4.3. Setup Class
This is where most of the initialising for the benchmarks takes place. I decided to make static

variables and define them inside the setup, to minimise the time spent doing it during

benchmarks so I can focus more on the algorithm’s goals.

Figure 12: Benchmark setup

In the above image I am creating the plaintext and randomising the bits, I am then creating

key pair generators with different security levels provided by the algorithm to then create a

key pair. Rather than rely on the benchmarks to call on one another, inside the setup I would

assign a variable to run the benchmarks to get assigned variables. It is important to note that

these don’t run the benchmarks as the setup is fully initialised before the benchmarks can

take place. The setup class is annotated with the @Setup annotation.

Page 10 of 26

2.4.4. Benchmark Class
This is where the real benchmarking takes place, where it will execute and keep track of how

fast the operations defined take.

Figure 13: Falcon Sign Example

In the example above, we are using falcon512Sign() to create a signature. Inside this

benchmark, we want to calculate how long it takes to initialise the cipher and create the

signature. Since I didn’t want benchmarks calling other benchmarks, I ended up allowing the

benchmarks to return values, which is good due to it being more efficient on the code, and it

allows me to assign a variable to run these benchmarks to reuse them in other benchmarks,

without the benchmarks running yet since it’s all assigned in the setup phase.

2.5. Benchmark Results
By default, the benchmarks are run, and the results are just outputted to the console, but to

better compare algorithms I would need to save these easily. When a benchmark is selected it

runs through a switch statement until it finds its algorithm name, then I am adding on to the

JMH options to include a results file to be saved at a specified location.

Figure 14: Sphincs+ CSV

Page 11 of 26

In the above, when “Sphincs+” is found, I can specify that I want to save the file, and where I

want it saved. For the profilers, I have Boolean statements that are triggered, which will add

to the benchmark builder to add the profiler.

Figure 15: Adding Profiler

The results are being saved to a CSV file as they’re compatible with JMH and Excel. The

results save to the file in the same format as of which the printout is to the console.

Figure 16:CSV File

2.5.1. Graphing Benchmark Results
To graph the results, it would require me to parse the result files, search for the score column

and then update the graph with the scores every time a new graph is added.

I started by creating a blank canvas with no data, as I can update the canvas when needed.

Figure 17: Creating Blank Graph

Page 12 of 26

Once a user selected results to graph, I parsed the file looking for the ‘score’ and if it was

found it was extracting all the data until it hit an empty cell again and then stop. The scores

are stored in an array to layer and are painted on the chart.

Figure 18: File Parse

This would then call the function I created which repaints the graph with the updated arrays

and plots them on the graph.

Figure 19: Update Chard Method

Saving the graph was simply using a Bitmap Encoder to save the file to a path specified by

the user.

Figure 20: Saving Graph

Page 13 of 26

2.6. Getting Algorithm Selection to Benchmark
I stored the names of each algorithm into a string array, with the names equalling the options

provided in the dropdown box to the user. The selected algorithm name would then run

through a switch statement and stop when it found a match. It would then run the main

method of the algorithm before then running and saving the benchmarks.

Figure 21: Switch Statement to run benchmarks.

2.7. Showcasing Algorithm Security
Trying to showcase the security differences such as key or signature lengths wasn’t possible

due to the benchmarks being isolated and reset. This led to me implementing the algorithms

outside of the benchmarks so that I could save parameters such as encoded/decoded keys and

signatures. That is why in the switch statement above, I am executing the main method of that

algorithm first to quickly generate the keys and other parameters. The main method is

creating the folder structures and saving the files and their contents.

Figure 22: Folder Layout

Page 14 of 26

2.7.1. Saving Data to a File
I wanted to showcase the encoded and decoded variations of each parameter. This meant in

some cases like keypairs, I would have to convert the Key-Pair variables into Bytes and then

write the bytes to a string and save the string.

Figure 23: Save Data to File

Figure 24: Saving Keys as Strings

Figure 25: Encoded Plaintext

Figure 26: Decoded Public Key

Page 15 of 26

3. Description of Conformance to Specification and Design
I believe a lot has changed from the original Functional Specification I had designed. I

believe the structure of the UI stayed someone similar but the further I progressed into the

project, the more I discovered and changed what I was using and the way I was using them.

I will first discuss the changes in technologies, then the algorithms in which I wanted to

benchmark and then any other tasks I’ve since added.

3.1. Technology Differences
Bouncy-Castle - Although I did specify the use of Bouncy-Castle, I didn’t specify that I was

mostly using the beta Post-Quantum Cryptography (PQC) of Bouncy-Castle, which is

required to implement post-quantum algorithms.

Java Universal Network/Graph (JUNG) – I had initially planned to use this to graph my

benchmarks to get a visual representation of the benchmarked data. I was having some

difficulties in getting this to work so I decided to use X-Chart instead, which was a much

easier tool to use.

Maven – I found using Eclipse a little hard, as it’s not visually pleasing and connecting the

right files can lead to a lot of issues, to begin with. Instead of just using Java, I used Maven

which helped me automatically build and compile my project and helped me organise it in a

better manner.

OpenCSV – I hadn’t researched how to parse files initially, but when it finally came to that

point in the project, I tried a couple of CSV file readers, with this being the only one to work.

3.2. Algorithm Differences
I initially planned to benchmark five pre-quantum and five post-quantum algorithms.

Pre-Quantum: AES, MD5, SHA-256, RSA, El Gamal.

Post-Quantum: CRYSTALS-Kyber, CRYSTALS-Dilithium, Sphincs+, SIKE, PICNIC.

I instead ended up benchmarking five pre-quantum algorithms and seven post-quantum

algorithms.

Pre-Quantum: AES, RSA, TwoFish, SHA-256, SHA-3

Post-Quantum: CRYSTALS-Kyber, CRYSTALS-Dilithium, Sphincs+, BIKE, PICNIC,

Falcon, Rainbow

MD5 – This is a broken algorithm but is still used for checksums, but I felt I could implement

a more relative algorithm instead.

El Gamal – There isn’t anything wrong with El Gamal, it’s just that TwoFish seemed like a

more interesting option to benchmark.

SHA-3 – Instead of MD5, I felt like the relatively new SHA-3 would be a good algorithm to

cover as it will probably become the next new hashing standard to be used worldwide.

SIKE – SIKE was initially implemented in the Bouncy Castle library but was then removed

due to the algorithm being attacked successfully. Instead, I went for BIKE as at the time,

there was a limited number of post-quantum algorithms to choose from.

Page 16 of 26

Falcon & Rainbow – I couldn’t decide which algorithms to replace with SIKE, so I initialled

picked Rainbow but there was a bug within the Bouncy Castle library, so I had to turn to

Falcon. After a few months, there was a bug fix, so I decided to implement Rainbow anyway

because of the name.

All of the other algorithms that I have kept, as of different backgrounds and types so keeping

a variety of them help with benchmarking them.

4. Description of Learning

4.1. Technical Learning

4.1.1. Using Maven
I initially only started using Maven because of its popularity of it when I searched for how to

start this project. This led to me not knowing how to use it, especially the pom file, where

you link all, your project dependencies too. After a lot of frustration, I finally learned how to

utilise Maven and use it to further organise my project and keep track of tasks.

4.1.2. Using Java Micro-Benchmarking Harness
I thought benchmarking would be quite easy, but unfortunately, no one has much information

on benchmarking algorithms like I am, so I was stuck with hardcoding every single piece of

my code. Instead of researching online, I instead started trying different methods that came to

mind, finally coming to the system I have now where I can create static variables and assign

them outside benchmarks to maximize performance impact. It also allows me to prevent the

benchmarks from calling one another in other to proceed, instead, I can run them inside the

setup to initialise static variables to include in the benchmarks.

4.1.3. Implementing post-quantum algorithms with Bouncy Castle.
Another issue I was having was the lack of information on implementing these algorithms

with BC. There is next to no information on this, so I had to extensively research to find

information on the implementation of the algorithms,

4.1.4. Coding in Java
Having not coded in Java in two years, it was safe to say I was rusty on how to even start

coding a simple program. After some research and a lot of practice, I was somewhat fluent in

Java and got into a good uninterrupted workflow.

All of these contribute to increasing my technical abilities. Not only has it increased my

knowledge of Java, but I’ve also learned a lot about cryptographic algorithms and their

implementations and limitation. I’ve learned the restrictions when benchmarking algorithms

and potential optimisation I need to make to get more accurate results. Since a lot of my work

is coding, my typing speed and accuracy have improved too.

4.2. Personal Learning

4.2.1. Patience
Having to look at complex arithmetic and equations took a lot of energy out of me, and often

more than not I would need to re-read sentences over and over to just wrap my head around

certain concepts. Being patient allowed me to finally take on the information needed.

Page 17 of 26

4.2.2. Allocating Time
I quickly learned the importance of setting myself up to work on the project for a couple of

hours a day to maintain a steady workflow throughout the year. I also overestimated how long

each task would take me to achieve, just to give myself enough time in case I needed that

extra work and not have to worry about time constraints.

5. Project Review

5.1. Would I approach it differently?
I feel as though overall my project is where I wanted it to be and that it’s in good shape. One

of my biggest mistakes was leaving it quite late to start on the post-quantum algorithms. I left

them until last and I started to struggle with time as I had to pressure myself into learning the

post-quantum algorithms and problems. Instead, I would have started with learning and

writing up about the post-quantum algorithms at the start of the year when it is quieter and

stress-free, this means you would get the hard, intensive work out of the way first. I didn’t

account for the lack of good information, so I wasted a lot of time on that. I underestimated

the complexity of understanding and implementing the post-quantum algorithms.

5.2. Technology Choices
I initially believed my technology choice at the start was what was best for my project, but

that quickly changed once I started trying to integrate them into my project. I started running

into issues and had to try multiple similar plugins. Reviewing my final technology choices

now, I believe I found a good balance that works and allows me to implement my project

without issues.

5.3. Testing Results
Here is a summary of my findings, showcasing the results of each algorithm. Since some

algorithms can have up to two-hundred benchmarks done for five categories, I will provide

the average time of each category and not even the benchmark instance.

I will be using three warmup iterations for one second each, and five measurement iterations

for one second each. These benchmarks would be processed for longer, but the PICNIC

algorithm alone took two hours for benchmarking five iterations for five seconds each and

my parents weren’t too happy with the electricity bill.

Disclaimer: I am missing the SPHINCS+ benchmarks as I ran out of time to organise them to

display.

5.3.3. Falcon Results
These are the benchmarks for the two Falcon parameters. We can clearly see that increasing

the security of this algorithm comes with large impacts on performance, which may make it

unfeasible to use in most cases, the Falcon-512 parameter is probably worth it more as it’s

faster and still provides a high level of security.

Page 18 of 26

Figure 27: Falcon Results

5.3.4. Picnic Results
As we can see, the higher security we try to use in Picnic, the longer it takes to run the

algorithms, however, the differences between L1FS and L5FULL aren’t that bad, and it might

be worth considering testing out all of these algorithms to find the best fit.

5.3.5. CRYSTALS-Dilithium Results
We can quickly see that Dilithium with AES takes a lot longer than on its own, but with

hashing, you do get a very high level of security, although at this rate you’re probably best off

using AES on its own rather than Dilithium, or even Dilithium on its own to save

performance.

Page 19 of 26

5.3.6. CRYSTALS-Kyber Results
Unlike Dilithium, we don’t see as much of a performance gap when using Kyber with AES,

although here the Kyber-768Aes benchmark is higher than what is expected from the other

benchmarks. This could be due to the awkward key size and the need for padding to wrap the

key. Despite this, Kyber is surprisingly efficient.

5.3.7. BIKE Results
We can quickly compare the BIKE results to the Kyber results, which provide the same

functions, but obviously implemented in different ways. We can see that BIKE is way more

expensive that Kyber, but BIKE is notorious for being slow, but with this comes a high level

of security as the key sizes are large, but a performance hit this high does not seem worth it as

of now.

5.3.8. Rainbow Results
As we can see that the performances here vary a lot, especially between Rainbow 3 and 5, but

this is expected as the key and signatures sizes are a lot bigger. However, I think in terms of

performance and security, Rainbow is a well-rounded candidate.

Page 20 of 26

5.3.9. AES Counter Results
Disclaimer: I didn’t randomise the plaintext during the benchmark, so encryption is a lot

faster than it should be. Besides this, it is one of the most used algorithms to date, but

unfortunately will be rendered useless by quantum computing.

5.3.10. SHA-256 with ECDSA Results
Already we can see why hash functions, even though classic algorithms, will still play a high

part in quantum cryptography, and why a lot of post-quantum algorithms utilise SHA-2 or

SHA-3 in some way. Since there is no decryption or reversals, hashing is extremely fast,

whilst still providing good security levels. However, it may be recommended to start using

higher keys once quantum computers release to combat the potential danger,

5.3.11. RSA Results
As we can see, RSA is a relatively fast algorithm, as long as it’s not dealing with digital

signatures. RSA is quick with encryption, but quick slow decrypting and usually is used with

other algorithms to speed this up.

Page 21 of 26

5.3.12. Sha-3 Results
We can see the benefits of using SHA-3 over the SHA-2 family like SHA-256. The SHA-3

algorithm is using a 512-bit key, so not only provides more security but also maintains the

high performance of SHA-2. SHA-2 is still more popular due to the new age of SHA-3, but in

the future SHA-3 will probably be implemented nearly everywhere.

5.3.13. TwoFish Results
TwoFish is a reliable algorithm that is very quick due to its high optimisation. It is a small

algorithm and due to this has small key sizes, so it prioritising performance over security.

5.4. Was My Project a Success?
I believe my project was a success. I’ve implemented everything I hoped to include, even

introducing an extra two post-quantum algorithms I initially didn’t consider. I haven’t

encountered any final issues with my project. The only other feature I would have loved is to

run the program through an executable JAR file, unfortunately, this was too troublesome. I

believe I made the correct decisions, albeit not obvious immediately at times.

The main goal of my project was to answer whether we should switch to quantum algorithms

sooner rather than later. I believe if my project provided a solid foundation towards an answer

then it was a success. So, do I believe we should make the jump to post-quantum

cryptography now? Yes, and no. Whilst I am happy to sacrifice some performance over

security, it’s not always feasible in every situation. I believe we should make the jump

regarding some aspects of our lives, such as secure communications like texting or passwords

Page 22 of 26

and file storage. These don’t need to be necessarily quick; we would rather have the extra

security so it would make sense to implement them in these fields. About Wi-Fi

communication, phone calls, or anything that needs to be in real-time, I believe that making

that jump isn’t worth the performance drop-off. There is a large performance difference

between the eras of cryptography, one that a modern computer yet cannot catch up to be on

par with the performance levels we have with classic algorithms now. I think in couple more

years given more advancements in computers on the algorithms themselves, we can fully

become quantum resistant.
6. Acknowledgements
I would like to thank my project supervisor Paul Barry for his help throughout the project and

the friendly chats we had every week.

I would also like to thank Conor McKenna, for reminding me that no matter how hard my

project gets, and how much I may struggle, I will never feel the pain of being a Tottenham

fan.

Page 23 of 26

I declare that all material in this submission, e.g. thesis/essay/project/assignment, is entirely

my own work except where duly acknowledged. I have cited the sources of all quotations,

paraphrases, summaries of information, tables, diagrams, or other material, including

software and other electronic media in which intellectual property rights may reside. I have

provided a complete bibliography of all works and sources used in the preparation of this

submission I understand that failure to comply with the Institute’s regulations governing

plagiarism constitutes a serious offence.

Student Name : Cavan Phelan

Student Number: C00249198

Student Signature: Cavan Phelan

