

JONATHON BOURKE
C00242865
Research Document

Jonathon Bourke C00242865

 pg. 1

CONTENTS

Abstract ... 3

Abbreviations .. 4

Vulnerability Management ... 5

The vulnerability managment lifecycle ... 6

Preparation .. 6

Assess ... 8

Prioritize ... 11

Act .. 12

Reassess ... 12

Improve .. 13

Vulnerability Management Maturity Model ... 14

Level 1 – Initial ... 14

Level 2 – Managed ... 14

Level 3 – Defined ... 14

Level 4 – Quantitatively Managed ... 14

Level 5 – Optimized ... 14

Patch Management ... 15

General Recommendations ... 16

Challenges of Patch Management ... 16

Patch Management Technologies ... 17

Research on vulnerabilities ... 18

Vulnerability Types .. 18

Code Execution .. 18

Buffer overflow .. 19

Denial of Service .. 19

SQL Injection .. 20

Directory Traversal .. 20

Cross site scripting ... 20

Cross site request forgery .. 21

Privilege escalation .. 22

Authentication Bypass ... 22

Security Misconfiguration .. 23

Jonathon Bourke C00242865

 pg. 2

Common Weakness Enumeration (CWE) .. 23

Categorization of a vulnerability.. 25

Consequences of Exploited vulnerabilites .. 32

Malware ... 32

Data Exfilltration .. 33

Comprimised accounts .. 33

Persistence ... 34

Lateral movement ... 34

Data and Hardware Destruction .. 35

Privilege escalation .. 35

Command and Control... 36

Project brief with brainstorm .. 36

Tools .. 38

Similar Technology .. 39

Programming Languages ... 40

Python .. 40

Java .. 41

C++ ... 41

PHP ... 42

JavaScript ... 43

Ruby ... 43

Perl ... 44

Haskell .. 44

Programming language comparison .. 45

Storage/Databases .. 46

Bibliography .. 49

Jonathon Bourke C00242865

 pg. 3

ABSTRACT

Vulnerability Management encompasses the acts that identify, evaluate, remediate, and

document security weaknesses in software, hardware, and operating systems. Following

good quality vulnerability management practices is vital in reducing organisations attack

surface and prioritizing relevant security threats that are constantly discovered.

This document details any research that will have degrees of relevance in fulfilling the

proposed project brief. It includes discussion into tackling the difficult challenges in its

implementation.

Jonathon Bourke C00242865

 pg. 4

ABBREVIATIONS

CVE - Common vulnerabilities and exposures

NVD - National Vulnerability Database

CVSS - Common vulnerability scoring system

CCE - Common configuration enumeration

CPE - Common platform enumeration

WFN - Well-formed name

DDOS – Distributed Denial of Service

CSRF – Cross-site Request Forgery

URL – Uniform Resource Locator

PVG – Patch and Vulnerability group

WAF – Web Application Firewall

AV – Anti Virus

OO – Object Orientated

ACID - Atomicity, Consistency, Isolation, Durability

CAP - Consistency, Availability and Partition Tolerance

OLAP – Online analytical processing

OLTP – Online transactional processing

Jonathon Bourke C00242865

 pg. 5

VULNERABILITY MANAGEMENT

Vulnerability management is the constant cycle of finding, evaluating, and remediating

cyber security issues in an environment. This helps an organisation identify and patch issues

that arise from changing environments and new vulnerabilities. As a result, the

organisations attack surface is minimized. The potential consequence of emerging threats

can also be prevented.

A formal Vulnerability management is a critical part of any organisation’s security program.

It helps to educate the workforce on how threat adversaries gain initial access, bring

attentions to existing vulnerabilities in the environment and the mitigation of their risk.

Data breaches and system disruption incidents are continuing to increase. This is augmented

by the fact that becoming more damaging on organisations. It is estimated that the cost of a

data breach on an organisation is increasing 10% every year. (IBM Security, 2021). These

costs are significantly lower for organisations with mature security postures.

(IBM Security, 2021)

Jonathon Bourke C00242865

 pg. 6

THE VULNERABILITY MANAGMENT LIFECYCLE

(Barros, 2019)

PREPARATION

Determine scope of program: To determine the vulnerability programs scope, the

concerned organisational assets and services must be documented. Once these have been

determined, the operational environment in which the assets are present should be

evaluated and recorded. This will help to define the types of exposures the assets may be

subject to.

Define roles and responsibilities: NIST recommends that organisations form a group known

as the Patch and Vulnerability group (PVG). This should contain individuals who are skilled in

the area. Individuals with knowledge of administration, intrusion detection and firewall

management are advised to be included in the group. The PVG will monitor for potential

vulnerabilities or weaknesses within the scope defined. The size and complexity needed for

group roles varies in each organisation. Typical roles in the PVG include:

Jonathon Bourke C00242865

 pg. 7

• Vulnerability monitoring

• Vulnerability priority

• Remediation database maintenance

• Remediation testing

• Remediation distribution

• Remediation verification

• Update Management

• Internal Training

(Mell, Bergeron, & Henning , Creating a Patch and Vulnerability Management Program,

2005)

Select vulnerability assessment tools: Selected suitable vulnerability assessment tools can

be difficult due to varying needs and the expansive list of tools out there. Generally paid

tools will give better performance than free tools. Most of the paid tools were once free but

switched once their development hit a certain level. Below is a list of criteria to assess if the

tool is sufficient:

• Quality and Speed: When a tool scans for vulnerabilities it happens in real time. This

metric defines the reliability and promptness of the tool.

• Usability: The tools should be easy to interpret and provide intuitive functions with

few to no complications.

• Compatibility: The product should be compatible with major operating systems,

applications, and components.

• Support: Should be able to detect issues with all types of cloud computing in real

time.

• Compliance: The selected tool should comply with all policies and standards set

within the organisation.

• Prioritization: Should include manual and automatic prioritisation in its functionality.

• Remediation assistance: The tools should offer remediation steps on any

vulnerability it finds

• Vendor Support: Should be included as part of the client-vendor contract. This

should be one of the top prioritizations when selecting a tool.

Relevant personnel should receive training in the chosen tools under their scope.

Create and refine policy and SLAs

Policies should be created on the first lifecycle and further refined on at the start of

subsequent policy periods. The scope of the policy should be determined first. Vulnerability

scopes can fall under categories such as:

Jonathon Bourke C00242865

 pg. 8

• Network

• Host

• Server

• Virtual Machine

• Operating systems

• Database

• Applications

Upon determining the scope of the vulnerability, the objectives and expectations should be

established. The process in achieving the objectives would be documented in a detailed,

high-level manner. Policies should follow also appropriate compliance standards that an

organisation may be subject to.

The next step is to define roles and responsibilities for the policy. This is to ensure the

smooth procedures and there is an appropriate sequence from reporting to remediation

and measuring performance.

SLAs are timeframes for vulnerability remediation based on the organisations risk tolerance.

These will be further influenced by the risk of the vulnerability and the importance the

affected product has to the organisation. From this information, specific SLAs depending on

the situation. This allows for resources to be allocated most effectively and to track

performance metrics against the allocated SLA.

Identify asset context sources

Find up to date sources of vulnerability information about the types of assets used within

the scope. Any new assets must be appropriately update with this information in a

repository. Usually this will include any sources of information directly from the vendor and

groups who specialise in the asset.

ASSESS

Build an asset inventory

Create an inventory of assets comprised of hardware, Operating Systems, applications used

within the organisation. This will define the scope and priority of the program and allow

response to be quick and effective. It can be challenging to keep and maintain an accurate

asset inventory due to diversity, lack of control over assets.

Identify and categorize assets

Assets should be defined under previous vulnerability policy items. This will help define SLAs

when a risk score is determined for the asset. This can be aided by tools which will record all

up-to-date assets within the environment. A risk profile will be included for each asset. This

Jonathon Bourke C00242865

 pg. 9

is achieved by assigning values to different threats that are considered against the asset and

its value.

(NIST, 2021)

The value of an asset can be calculated by determining the subsequent loss of

confidentiality, integrity, and availability in the event of compromise.

Common platform enumeration (CPE)

CPE is a standardised list of techniques used to find and categorize applications, operating

systems and hardware that may be present in an organisations environment. CPE does not

document unique variations of the product but instead identifies them abstractly such as

Microsoft Word (all versions).

Current CPE 2.3 Stack

Jonathon Bourke C00242865

 pg. 10

(NIST, 2021)

Applicability Language: Defines structure for forming logical expressions out of WFNs.

These are used to highlight any checklists, policies, and related documents to the product.

Dictionary: A repository of CPE names and metadata. Names defines the class of the IT

product

Name Matching: Defines methods and procedures for identifying similar WFNs to

determine if they fall under some or all the same technology.

Naming: Contains four attributes; Well-formed names (WFNs), URI Bindings, formatting

string bindings and procedures for converting WFNs to and from bindings

(NIST, 2021)

Vulnerability scan

This is the process of determining weaknesses on systems and applications. Identifying

vulnerabilities can be automated using tools or through manual penetration testing.

• Vulnerability Scanning: An automated high-level scan performed by dedicated

software that finds potential vulnerabilities in the environment.

• Penetration Testing: Process of probing for weaknesses on systems and applications

performed by dedicated Penetration Testers. This has the advantage of determining

the root cause of the weakness over vulnerability scanning.

A combination of the two is often the best approach. Vulnerability scanners can perform the

repetitive tasks and find the high-level weaknesses. Penetration testing can dig deeper and

expose vulnerabilities not picked up by the scanner. More refined overviews are also

provided.

Vulnerability report

Jonathon Bourke C00242865

 pg. 11

Once weaknesses have been determined in the vulnerability scanning phase, the findings

must be summarised into a vulnerability report. This will include a description of the

security weaknesses found, the assets it was discovered on and the severity.

The typical structure of the vulnerability report will be:

Executive summary: High level overview for readers. Should contain the risk imposed, the

issues and how they can be secured. It may also contain any notable findings and if the

objectives were achieved.

Assessment Overview: Summary of the activities of the vulnerability scans. This will detail

the approach used, confirmation of results, tools utilized and the methodology of the

evaluation.

Assessment Findings: Goes into detail on any of the vulnerabilities found, each with their

own section noting the following items:

• Name of the vulnerability

• Discovery date

• Severity

• Description

• Steps to replicating

• Impact

• Remediation steps

Severities are normally ranked from highest to lowest. This emphasises the most critical to

remediate first.

PRIORITIZE

Assign Value

Assign the vulnerability under the appropriate scope and product. Using risk profiles and

scores set on the affected assets, determine the SLA for remediation.

Gauge Exposure

Determine the exposure the organisation has to the vulnerability. This will help with

prioritization and resource allocation to the issue. Exposure may fall under categories like:

• Financial

• Competitive

• Reputational

• Regulatory

Jonathon Bourke C00242865

 pg. 12

Add Threat Context

Find intelligence which provides more information on the vulnerability. This can include

previous victim incidents, how the technique is employed by threat actors, their capabilities,

typical targets and other information on these campaigns that might be beneficial in adding

threat context.

ACT

Three types of action path may be taken depending on the characteristics of the found

weakness, resources available and associated risk. Any action taken should be tested before

rolling it out to the greater environment.

Remediate

Begin the procedures for remediation of the weakness on the affected assets. This will vary

depending on the vulnerability. A full remediation means that the weakness will be fully

neutralized. This will mean the threat is either patched or blocked on all affected assets.

Mitigate

Vulnerability mitigation involves lessening the impact the weakness could have on the

organisation. The threat will not be fully nullified. This involves either reducing the attack

surface of the or following mitigation protocols assisted by advisories. A mitigation might be

chosen as opposed to a remediation if it could cause availability issues. The associated cost

may outweigh the risk. Unavailable updates or patches may be the root cause. In these

events, it is advisable to find relevant and accredited advisories to help determine the

appropriate mitigation path. It is advised to review for any released patches once available.

Accept risk

Risk acceptance of a vulnerability may occur if the following conditions are met. The cost or

negative impact of remediating/mitigation outweighs the damage potential on the

organisation. The likelihood of exploitation may be incredibly low with mild negative

impacts. Risk acceptance does not need to be indefinite and can be revisited once a more

suitable resolution is available.

REASSESS

Validate

Any remediations/mitigations will have to gauged for their effectiveness against preventing

the exploitation of the vulnerability. This can be achieved through efforts of a Penetration

Testing team to expose any remaining risks after the patch was applied. There may have

been issues with the deployment also. The success of the distribution should be confirmed

Jonathon Bourke C00242865

 pg. 13

and remediated as necessary in the event of a problem. Any findings should be documented

in the appropriate repositories.

Rescan

Preforming a precautionary vulnerability scan using chosen tools to determine that the

asset is now protected against the weakness. Document any findings from the interpreted

scan results and determine the effectiveness of previous remediation steps. If it is found

remediated, the issue can be resolved. Otherwise, the issue should remain open and be

scheduled for further analysis.

IMPROVE

Eliminate underlying issues

Determine any obstacles or challenges faced in this vulnerability management cycle. Areas

of improvement should also be focused. The gathered information can be used for refining

process and SLAs.

The root cause of the vulnerability’s existence should be determined through analysis. Some

example areas include:

• Third party vendor issue

• Misconfiguration

• Non-compliance with policies

• Inappropriate training

• Difficulty in operations

Evolve process and SLA

Using the gather information, decide how these underlying problems could be alleviated.

SLA times may have been unsatisfactory or miscategorized. Research could be performed

into preventing similar incidents in the future. Security training or incident response

procedures could be improved depending on the potential faults discovered. Incorrect

immediate actions could have been taken or the wrong personnel could have been notified

for the vulnerability.

Evaluate metrics

Use the recorded metrics to determine the efficiency of vulnerability management

processes. The main areas to evaluate are:

• The effectiveness of the remediation process

• The time it took from discovery and patching.

• Asset exposure time

Jonathon Bourke C00242865

 pg. 14

VULNERABILITY MANAGEMENT MATURITY MODEL

The vulnerability management maturity model is a mixture of asset analysis, vulnerability

scanning, patch management, policy implementation and its success metrics. These

characteristics are used to define an organisation’s rank in vulnerability management

maturity. Under current models, this is comprised of five stages: Initial, Managed, Defined,

Quantitively Managed and Optimised.

LEVEL 1 – INITIAL

This is the initial stages where an organisation starts a vulnerability management program.

This is usually out of a need to establish compliance with various cyber security standards.

This is normally seen with weak/non-existent policies that may also be intertwined with

maintenance

LEVEL 2 – MANAGED

The organisation is beginning to expand its vulnerability management program. This can be

due to an audit which requires the organisation to expand on something missing in their

program. This will then result in specific policies been written. As a result, the company’s

program is categorized as Level 2.

LEVEL 3 – DEFINED

After some incidents, an organisation may begin researching on how to create a better

vulnerability management program. This is normally followed by research into a better

program for dealing with these threats. After some policy creation and internal training, the

organisation is becoming more proactive in its approach. This marks the beginning of stage

3.

LEVEL 4 – QUANTITATIVELY MANAGED

Stage 4 is when an organisation begins tracking the effectiveness of various vulnerability

management policies in place. This includes compliance, incidents and anomalies that may

occur in its proceeding. The tracking of these lets the organisation focus on their

weaknesses and implement the short comings in internal training.

LEVEL 5 – OPTIMIZED

The vulnerability management program is now driven by automated policies. When any

anomalies are found, alerts are automatically generated and are subsequently remediated.

These events are used to drive internal training to ensure these deviations do not become

an issue.

Jonathon Bourke C00242865

 pg. 15

(Risto, 2020)

(SANS, 2021)

PATCH MANAGEMENT

Patch management is the process of acquiring, verifying, testing, and installing patches for

products and systems. Patches help fix any security weakness that may have been present

in the product. Apply security patches to vulnerable products helps reduces attack surface

by closing potential opportunities for threat adversaries.

There are several challenges to developing a safe and efficient Patch Management program.

These serve to complicate the process but can be overcome with proper protocol.

• Acquire: Patches may be included in automatic updates from vendors or manually

retrieved from vendor/accredited sites.

• Verify: Verify the source and integrity of the patch. A digital signature is usually

provided. Search relevant forums for more information on the patch.

• Test: Test the patch in a controlled environment and observe any anomalies or

issues.

• Install: Dispatch the patch to affected hosts on the organisations network.

Jonathon Bourke C00242865

 pg. 16

GENERAL RECOMMENDATIONS

• In large organisations where large numbers of assets exist, it is best to develop a

phased approach to patch management. This involves setting up a test environment

to assess the patch before rolling it out to a greater audience.

• Assess the risk of introducing third party patch management software to your

environment. These tools can alleviate workload in the process. Some environments

may be impossible to manage with aid. Introducing these tools can add extra attack

surface by introducing their own potential vulnerabilities or allow adversaries to

intercept their communication.

• Installing patches may affect the availability of systems. Organisations should look to

balance their security with their needs. Installing a low severity vulnerability patch is

not worth taking devices offline for a few hours.

CHALLENGES OF PATCH MANAGEMENT

Timing and Prioritization: In a perfect setting, patches should be rolled out immediately to

reduce the window for exploitation to occur. A released patch notifies any attacker of the

issue. However, most organisations have limited resources at their disposal. These patches

also need to be tested before dispatch to reduce risk. This makes it necessary to assign

priority to patches in most cases.

Configuration: There is a disparity across software and systems to how patches are applied.

One application may be able to automatically update itself. Another may require the patch

to be manually installed. This can lead to conflicts in patch management applications. This

also includes any tampering the user may have performed which could affect patch

dispatch.

Host architectures: This is normally not an issue where all hosts in an environment are

managed centrally and are running identical technology. This is rare and number of problem

areas arise from the following categorizations.

• Unmanaged hosts: These are not centrally managed.

• Off-premises hosts: Not protected by the organisation’s outer security controls like

firewalls

• Non-standard hosts: May not be possible to patch without a dedicated software

update

• Mobile hosts: Run different operating systems. Normally require a different

approach to patching

• Virtual Hosts: Requires patch maintenance for each image. Different patching

protocols.

• Firmware: Differ to standard patching and require special privileges.

Jonathon Bourke C00242865

 pg. 17

Software Inventory Management: This refers to maintaining an inventory of what software

is installed on host devices. This is required to identify and acquire the appropriate patches.

Not having a maintained software inventory can also lead to issues due caused by different

versions.

Configuration changes: Installing a security patch may inadvertently modify the current

security settings of a host. This can be avoided by testing the patch before dispatch. (

Souppaya & Scarfone, 2013)

PATCH MANAGEMENT TECHNOLOGIES

Enterprise patch management and deployment software achieves its functionality under

three possible categorizations: Agent-based, Agentless Scanning and Passive network

monitoring

• Agent-Based: Requires an agent application to be run on the host to detect

applications.

• Agentless Scanning: Network scans the environment and can detect applications on

hosts if it has privileges.

• Passive Network Monitoring: Monitors network traffic for traffic regarding

applications and their versions.

Comparison of Categorizations

Characteristic Agent-Based Agentless Scanning Passive Network
Monitoring

Admin privileges
needed on hosts?

Yes Yes No

Supports unmanaged
hosts?

No No Yes

Supports remote
hosts?

Yes No No

Supports appliances? No No Yes

Bandwidth needed for
scanning?

Minimal Moderate to excessive None

Potential range of
applications detected?

Comprehensive Comprehensive Only those that
generate unencrypted
network traffic

(Souppaya & Scarfone, 2013)

Jonathon Bourke C00242865

 pg. 18

RESEARCH ON VULNERABILITIES

As documented by SANS Institute, “Vulnerabilities are gateways by which threats are

manifested”.

Vulnerabilities occur due to:

Systems can initially come with both known bugs and exploits. They may also come with

unknown vulnerabilities that have yet to be uncovered. The default configuration on

systems may also be insecure.

Misconfigurations by engineers or administrators may occur.

VULNERABILITY TYPES

Vulnerability types can be categorized based on the technology that they exist. These

include but are not limited to:

Software: Flaws or weaknesses in the code of a software application.

Firewall: Firewall vulnerabilities are the result of configuration error, absence of packet

inspection or security patches. This can allow attackers to potentially bypass an

organisations outer perimeter.

Network: These vulnerabilities originate from misconfigurations and weaknesses on ports,

services, and intermediary network devices across a network.

Operating System: Errors or weaknesses in an operating systems code which can allow an

attacker to take over, damage or persist on the host.

Web Server: These are categorized under misconfigurations or weaknesses in websites or a

web applications code. Exploiting these potentially allows attackers to affect its

confidentiality, integrity, and availability.

Database: Vulnerabilities that allow access, damage or theft to a database application and

its assets. This could be through the likes of SQL injection though unvalidated variable in an

application, weak authentication mechanisms on the database or weaknesses discovered in

the database applications code.

CODE EXECUTION

This includes security flaws which allow arbitrary code execution either remotely or locally.

Arbitrary code execution is the ability to run any code/commands on a device. This will

essentially allow the attacker full control over a system at the same privilege level as the

Jonathon Bourke C00242865

 pg. 19

target process. Attackers are not confined to this level if they can find a weakness that

allows privilege escalation.

Mitigations

• Anti-virus solutions offer a layer of protection against files that have unwanted code

execution.

• Firewalls and WAFs can prevent executables from reaching out to a command and

control if it is a known malicious source.

• Review application code for any potential security issues like unvalidated input from

the user.

• Arbitrary code execution normally requires initial access. Maintaining a good security

posture will help prevent compromise in the first place.

• Ensure to employ user compromise prevention tactics with least privilege

methodologies.

BUFFER OVERFLOW

This occurs when more data is added to a buffer than it holds. This will cause data to

overflow and overwrite to adjacent storage. This can allow an attacker to write malicious

code to this storage by packaging it within the payload that caused the buffer overflow.

Buffer overflows are a dangerous type of attack as this code can be written at a kernel level

and be almost impossible to remove. It is the leading software weakness due to several

challenges in mitigating it and often requiring understanding for prevention.

Mitigations

• Choosing a strongly typed programming language that does not allow direct access

to memory is highly recommended. Languages like C++ and assembly are notorious

for buffer overflow vulnerabilities due to these characteristics. It is advised to have

experience in terms of correct coding practices involving memory management

before choosing to develop in these languages.

• Ensure applications have the latest patches especially if security orientated

• Audit the code in any application before it is allowed for use within the environment

to ensure recommended buffer overflow mitigations are applied.

• Note any buffer overflow vulnerabilities that have been picked up though scans or

penetration tests and mitigate by either patching or disabling its use if it is greater

than accepted risk.

DENIAL OF SERVICE

Jonathon Bourke C00242865

 pg. 20

A Denial-of-Service vulnerability affects the availability of affected hosts or networks. This

will make it unavailable to intended users. This may be caused by more data being sent than

systems can handle. It also includes exploits which can crash systems.

Mitigations

• Avail of anti DDOS services and providers.

• Increase your bandwidth can make a service more costly to DDoS. Larger providers in

the cloud for example provide this.

• Ensure the latest patches and vulnerability mitigations are on application assets

within the environment.

SQL INJECTION

SQL injection vulnerability allows an attacker to pass malicious SQL commands to

compromise underlying SQL servers. This occurs through unvalidated user input which

allows direct SQL command to be entered. This can lead to a full compromise of the

contents of an SQL database as the attacker can enter a query they wish. This is a highly

dangerous and common vulnerability.

• User input validation and sanitisation.

• Filters to block commands commonly used by attackers

• Ensuring current patches are installed for database infrastructure and its software.

DIRECTORY TRAVERSAL

These are HTTP exploits which can allow unauthorized access to files and folders on a web

server. This can be a result of insufficient browser input validation or inadequate security

mechanisms.

Mitigations

• User input validation and sanitisation.

• Filters to block commands commonly used by attackers

• Ensuring current patches are installed for the web server and its software.

CROSS SITE SCRIPTING

Cross site scripting vulnerability are web exploits where malicious JavaScript is injected into

trusted web sites. These vulnerabilities normally exist due to lack of user input validation on

the affected website. The consequences of XXS are vast and can include user compromise

and information disclosure of affect assets.

 Cross-site scripting can be categorized under

Jonathon Bourke C00242865

 pg. 21

Persistent (Stored) Cross-site scripting: This type of XXS is where a successful payload is

stored on the target servers. Depending on the characteristics of the vulnerability, the

malicious payload may affect visitors or on an administrator. This is the most dangerous

type of XXS due to amount and profile of the users it can affect.

Reflected Cross-site scripting: Reflected Cross-site scripting is where the un-sanitated

payload is reflected off the web server onto an unexpecting user though social engineering.

This type of attack is more targeted and takes additional steps to perform.

The target must click on the crafted link. This sends a request to the server, and it returns

the page to user with the payload included.

DOM Based Cross-site scripting: DOM based Cross-site scripting can be defined by XXS

attacks that occur within the DOM environment. This means that this type never reaches

the web server and executes entirely in the browser.

Mitigations

• Ensure recommend security practice when coding application User input should be

validated and sanitised from known malicious input.

• Only allow expected input. Compromise can be made even more improbable if

anything not expected in a field is rejected. An example is an ID should only allow

numbers.

• Audit any relevant applications introduced to the environment for appropriate

coding practices.

CROSS SITE REQUEST FORGERY

In a successful CSRF attack, the victim is tricked into preforming an action they did not

preform by an attacker. The following assumes user is currently authenticated. If the user is

deceived into clicking a URL which will either send sensitive parameters in a GET request or

a direct to a crafted site, any consequent request sent to a CSRF vulnerable web server will

have no way to tell if the action was not performed by the user.

CSRF attacks require the following conditions:

• An action that would be lucrative for an attacker to preform like modifying the user’s

password.

• The user session is tracked only through a cookie. There is no anti-CSRF mechanisms

in place.

• There are no undetermined parameters for the attacker.

Mitigations

Jonathon Bourke C00242865

 pg. 22

• Having parameters that an attacker cannot predict. If your site preforms password

resets for users, require their previous password to be entered.

• Attaching an anti-CSRF token to the user’s session

• Validate any request that is sent to the server by the user. An example of this would

be to track the user with an origin header.

PRIVILEGE ESCALATION

This type of vulnerability occurs when a user can exploit a security hole to either gain

unauthorized entry to areas that should be unavailable, or functionality only intended for

higher privilege levels. This can allow the attacker to make modifications to data, steal

information stored in the application or run administrative functions.

Privilege escalation vulnerabilities are normally exploited in the early stages of an attack

when initial access is gained. This could be registered user in your application or a

compromised account to stage the attack from.

Mitigations

• Protecting user accounts through secure password policies and social engineering

education.

• Ensure latest security patches are installed.

• Use good practice with security in mind when coding. User input should always have

appropriate sanitisation.

• Design by least privilege and change any default or hardcoded configuration that

may exist.

AUTHENTICATION BYPASS

An authentication bypass vulnerability allows an attacker to bypass any authentication

mechanisms that are in place on a vulnerable application. Authentication may be bypassed

in several scenarios including:

• Stealing valid Session IDs and cookies.

• Misconfigurations in coding may allow access to areas of the application.

• Weak authentications mechanisms can expose vulnerabilities to the attacker

• Applications may have authentication in place, but certain files or locations may be

unprotected.

Mitigations

• Ensure latest patches for application are installed as soon as possible.

• Protect session IDs and tokens through encryption.

• All locations of the application should have adequate security protection.

Jonathon Bourke C00242865

 pg. 23

• Validate user requests at the web server.

SECURITY MISCONFIGURATION

Security misconfigurations are created due to mistakes, misinterpreted requirements and

systems that are left unpatched or without recommended settings. In large environments,

these are hard to avoid and discover but leave an opening for attackers to exploit.

Mitigations

• Developing a hardening process that is repeatable across the environment makes it

more secure and easier to spot anomalies.

• Avoid overburdening your application or environment with unnecessary

requirements.

• Regular reviews and updates of current configurations.

COMMON WEAKNESS ENUMERATION (CWE)

Common Weakness Enumeration (CWE) is a list of generalized weaknesses of

software/hardware that is actively maintained by the CWE community. The goal of CWE is

education for developers to these common weaknesses and how to prevent from being

present in their product.

The goal of CWE is to:

Categorize software and hardware flaws.

• Provide a resource for checking for product weaknesses.

• Document tools which target the weaknesses

• Establish standards for vulnerability identification, mitigation and how to prevent

them.

• Patch vulnerabilities in the development stage.

(CWE, 2021)

CWE also provides a comprehensive list of the top 25 most dangerous software weaknesses.

The ain is to bring awareness and priority to common and dangerous weaknesses.

The Common Weakness Enumeration (CWE) Top 25 (Chaudry, et al., 2021)

Place ID Name Score Position Change
from 2020

1 CWE-787 Out-of-bounds Write 65.93 +1

2 CWE-79 Improper Neutralization of Input During
Web Page Generation ('Cross-site
Scripting')

46.84 -1

Jonathon Bourke C00242865

 pg. 24

3 CWE-125 Out-of-bounds Read 24.9 +1

4 CWE-20 Improper Input Validation 20.47 -1

5 CWE-78 Improper Neutralization of Special
Elements used in an OS Command ('OS
Command Injection')

19.55 +5

6 CWE-89 Improper Neutralization of Special
Elements used in an SQL Command ('SQL
Injection')

19.54 0

7 CWE-416 Use After Free 16.83 +1

8 CWE-22 Improper Limitation of a Pathname to a
Restricted Directory ('Path Traversal')

14.69 +4

9 CWE-352 Cross-Site Request Forgery (CSRF) 14.46 0

10 CWE-434 Unrestricted Upload of File with Dangerous
Type

8.45 +5

11 CWE-306 Missing Authentication for Critical Function 7.93 +13

12 CWE-190 Integer Overflow or Wraparound 7.12 -1

13 CWE-502 Deserialization of Untrusted Data 6.71 +8

14 CWE-287 Improper Authentication 6.58 0

15 CWE-476 NULL Pointer Dereference 6.54 -2

16 CWE-798 Use of Hard-coded Credentials 6.27 +4

17 CWE-119 Improper Restriction of Operations within
the Bounds of a Memory Buffer

5.84 -12

18 CWE-862 Missing Authorization 5.47 +7

19 CWE-276 Incorrect Default Permissions 5.09 +22

20 CWE-200 Exposure of Sensitive Information to an
Unauthorized Actor

4.74 -13

21 CWE-522 Insufficiently Protected Credentials 4.21 -3

22 CWE-732 Incorrect Permission Assignment for
Critical Resource

4.2 -6

23 CWE-611 Improper Restriction of XML External Entity
Reference

4.02 -4

24 CWE-918 Server-Side Request Forgery (SSRF) 3.78 +3

25 CWE-77 Improper Neutralization of Special
Elements used in a Command ('Command
Injection')

3.58 +6

(Chaudry, et al., 2021)

To create the 2021 list, the CWE Team leveraged Common Vulnerabilities and Exposures

(CVE) data found within the National Institute of Standards and Technology (NIST) National

Vulnerability Database (NVD), as well as the Common Vulnerability Scoring System (CVSS)

Jonathon Bourke C00242865

 pg. 25

scores associated with each CVE record. A formula was applied to the data to score each

weakness based on prevalence and severity.

It is interesting to note that that the most common weaknesses can be categorized under

buffer overflow and improper input validation/sanitisation.

CATEGORIZATION OF A VULNERABILITY

Common vulnerabilities and exposures (CVE)

CVE records are unique identifiers for publicly known Cyber Security vulnerabilities. Every

CVE record contains:

• CVE ID Number: This is the number portion of the CVE record.

• Description: Written by CVE Numbering Authorities (CNAs) or individuals requesting

a CVE ID. Descriptions include relevant details to help find the CVE record of specific

vulnerability. They will also have details regarding the affected vendors, products,

versions and code components.

• References: References are used to identify the source and includes an identifier for

searching.

(Mitre, 2021)

Common configuration enumeration (CCE)

CCE components are part of a list of unique identifiers used to identify configuration issues

related to systems related to Cyber Security

Each component in the CCE List contains:

• CCE ID: Consists of the identifier: CCE, the number of the identifier and a check digit

produced from Luhn Check Digit Algorithm.

• Description: Gives an easy-to-understand description to identify the configuration

issue. This will most likely be a statement on if a configuration should or should not

be made.

• Parameters: Gives a list of parameters which will be needed to implement a specific

configuration. Associates’ parameters like a software configuration to a parameter

like Off, Manual, On.

• Associated technical mechanisms: May contain alternate ways to achieve

implementing compliance with the CCE

• References: Documents reference material for configuration guidelines.

(MITRE, 2013)

Common vulnerability scoring system (CVSS)

Jonathon Bourke C00242865

 pg. 26

The Common Vulnerability Scoring System (CVSS) provides an open-source framework to

categorise vulnerabilities based on characteristics and potential risk involved in the event its

exploited. Based on these attributes, a severity rating is calculated ranging from low to

critical.

(Mell, Scarfone, & Romanosky, A Complete Guide to the Common Vulnerability Scoring

System Version 2.0, 2007)

The score of a vulnerability can be calculated through the following formulas.

CVSS Base equations

Exploitability Sub Score

8.22 × 𝐴𝑡𝑡𝑎𝑐𝑘𝑉𝑒𝑐𝑡𝑜𝑟 × 𝐴𝑡𝑡𝑎𝑐𝑘𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 × 𝑃𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 × 𝑈𝑠𝑒𝑟𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑰𝑺𝑪𝑩𝒂𝒔𝒆 1 − [(1 − 𝐼𝑚𝑝𝑎𝑐𝑡𝐶𝑜𝑛𝑓) × (1 − 𝐼𝑚𝑝𝑎𝑐𝑡𝐼𝑛𝑡𝑒𝑔) × (1 − 𝐼𝑚𝑝𝑎𝑐𝑡𝐴𝑣𝑎𝑖𝑙)]

Impact sub score

𝑆𝑐𝑜𝑝𝑒 𝑈𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑 6.42 × 𝐼𝑆𝐶𝐵𝑎𝑠𝑒

𝑆𝑐𝑜𝑝𝑒 𝐶ℎ𝑎𝑛𝑔𝑒𝑑 7.52 × [𝐼𝑆𝐶𝐵𝑎𝑠𝑒 − 0.029] − 3.25 × [𝐼𝑆𝐶𝐵𝑎𝑠𝑒 − 0.02]15

Base Score 𝐼𝑓 (𝐼𝑚𝑝𝑎𝑐𝑡 𝑠𝑢𝑏 𝑠𝑐𝑜𝑟𝑒 ≤ 0) 0 𝑒𝑙𝑠𝑒,

𝑆𝑐𝑜𝑝𝑒 𝑈𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑4 𝑅𝑜𝑢𝑛𝑑𝑢𝑝(𝑀𝑖𝑛𝑖𝑚𝑢𝑚[(𝐼𝑚𝑝𝑎𝑐𝑡 + 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦), 10])

𝑆𝑐𝑜𝑝𝑒 𝐶ℎ𝑎𝑛𝑔𝑒𝑑 𝑅𝑜𝑢𝑛𝑑𝑢𝑝(𝑀𝑖𝑛𝑖𝑚𝑢𝑚[1.08 × (𝐼𝑚𝑝𝑎𝑐𝑡 +
 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦), 10])

*“Roundup” is defined as the smallest number, specified to one decimal place, that is equal to or higher than its input.

**”Minimum” Insert the smaller of the two arguments

(NIST, 2021)

CVSS Temporal Equation

Temporal Base Score 𝑅𝑜𝑢𝑛𝑑𝑢𝑝(𝐵𝑎𝑠𝑒𝑆𝑐𝑜𝑟𝑒 × 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝐶𝑜𝑑𝑒𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦 × 𝑅𝑒𝑚𝑒𝑑𝑖𝑎𝑡𝑖𝑜𝑛𝐿𝑒𝑣𝑒𝑙 × 𝑅𝑒𝑝𝑜𝑟𝑡𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒)

(NIST, 2021)

CVSS Environmental Equations

Jonathon Bourke C00242865

 pg. 27

Modified Exploitability
Sub Score

8.22 × 𝑀. 𝐴𝑡𝑡𝑎𝑐𝑘𝑉𝑒𝑐𝑡𝑜𝑟 × 𝑀. 𝐴𝑡𝑡𝑎𝑐𝑘𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 × 𝑀. 𝑃𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ×
 𝑀. 𝑈𝑠𝑒𝑟𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑰𝑺𝑪𝑴𝒐𝒅𝒊𝒇𝒊𝒆𝒅 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [[1 − (1 − 𝑀. 𝐼𝐶𝑜𝑛𝑓 × 𝐶𝑅) × (1 − 𝑀. 𝐼𝐼𝑛𝑡𝑒𝑔 × 𝐼𝑅) × (1 − 𝑀. 𝐼𝐴𝑣𝑎𝑖𝑙 ×
 𝐴𝑅)], 0.915]

Modified Impact Sub
Score

𝐼𝑓 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑆𝑐𝑜𝑝𝑒 𝑖𝑠 𝐶ℎ𝑎𝑛𝑔𝑒𝑑 7.52 × [𝐼𝑆𝐶𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 − 0.029] − 3.25 × [𝐼𝑆𝐶𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 × 0.9731 −

 0.02]13

𝐼𝑓 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑆𝑐𝑜𝑝𝑒 𝑖𝑠 𝑈𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑 6.42 × [𝐼𝑆𝐶𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑]

Environmental Score 𝐼𝑓 (𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝐼𝑚𝑝𝑎𝑐𝑡 𝑆𝑢𝑏 𝑠𝑐𝑜𝑟𝑒 <= 0) 0 𝑒𝑙𝑠𝑒,

𝐼𝑓 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑆𝑐𝑜𝑝𝑒 𝑖𝑠 𝑈𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑅𝑜𝑢𝑛𝑑 𝑢𝑝(𝑅𝑜𝑢𝑛𝑑 𝑢𝑝 (𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [(𝑀. 𝐼𝑚𝑝𝑎𝑐𝑡 +
 𝑀. 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦) ,10]) × 𝐸𝑥𝑝𝑙𝑜𝑖𝑡 𝐶𝑜𝑑𝑒 𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦 ×
 𝑅𝑒𝑚𝑒𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝐿𝑒𝑣𝑒𝑙 × 𝑅𝑒𝑝𝑜𝑟𝑡 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒)

𝐼𝑓 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑆𝑐𝑜𝑝𝑒 𝑖𝑠 𝐶ℎ𝑎𝑛𝑔𝑒𝑑 𝑅𝑜𝑢𝑛𝑑 𝑢𝑝(𝑅𝑜𝑢𝑛𝑑 𝑢𝑝 (𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [1.08 × (𝑀. 𝐼𝑚𝑝𝑎𝑐𝑡 +
 𝑀. 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦) ,10]) × 𝐸𝑥𝑝𝑙𝑜𝑖𝑡 𝐶𝑜𝑑𝑒 𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦 ×
 𝑅𝑒𝑚𝑒𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝐿𝑒𝑣𝑒𝑙 × 𝑅𝑒𝑝𝑜𝑟𝑡 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒)

(NIST, 2021)

*Modified Metrics have the same base metric value as corresponding base metrics. Example: AttackVector = M.AttackVector

*“Roundup” is defined as the smallest number, specified to one decimal place, that is equal to or higher than its input.

**”Minimum” Insert the smaller of the two arguments

CVSS Metric Values

Metric Metric Value Numerical Value

Attack Vector / Modified
Attack Vector

Network 0.85

Adjacent 0.62

Local 0.55

Physical 0.2

Attack Complexity / Modified
Attack Complexity

Low 0.77

High 0.44

Privileges Required / Modified
Privileges Required

None 0.85

Low 0.62 (or 0.68 if Scope /
Modified Scope is Changed)

High 0.27 (or 0.5 if Scope / Modified
Scope is Changed)

User Interaction / Modified
User Interaction

None 0.85

Required 0.62

Confidentiality / Integrity /
Availability / Modified

Confidentiality / Modified
Integrity / Modified Availability

High 0.56

Low 0.22

None 0

Exploit Code Maturity Not Defined 1

High 1

Jonathon Bourke C00242865

 pg. 28

Functional 0.97

Proof of Concept 0.94

Unproven 0.91

Remediation Level Not Defined 1

Unavailable 1

Workaround 0.97

Temporary Fix 0.96

Official Fix 0.95

Report Confidence Not Defined 1

Confirmed 1

Reasonable 0.96

Unknown 0.92

Confidentiality Requirement /
Integrity Requirement /
Availability Requirement

Not Defined 1

High 1.5

Medium 1

Low 0.5

(FIRST, 2021)

Qualitative Severity Rating Scale

Using the described formulas,

Rating CVSS Score

None 0.0

Low 0.1 - 3.9

Medium 4.0 - 6.9

High 7.0 - 8.9

Critical 9.0 - 10.0

(FIRST, 2021)

Exploitability Metrics

Attack Vector (AV): This refers to the context in which the vulnerability can be exploited.

• Network: This means that the vulnerability is exploited on Layer 3 of the OSI model.

This category is exploitable across OSI layer 3 boundaries. As a result, the

vulnerability is remotely exploitable.

• Adjacent Network: This means that the vulnerability is exploited on Layer 3 of the

OSI model. This category is not exploitable across OSI layer 3 boundaries. Limited to

the network it exists on.

Jonathon Bourke C00242865

 pg. 29

• Local: Not exploitable across layer 3 of the OSI model. Vulnerability exists through

read/write/access on a target machine. May need to be logged in locally or require a

file to be executed.

• Physical: This type requires physical access to a vulnerable component on a device to

be exploited.

Attack Complexity (AC):

• Low: Does not require specific conditions or circumstances to exploit. The

vulnerability is generally successful when attempted.

• High: Successful attempts at exploiting these vulnerabilities can require specific

conditions which may be out of the attacker’s control. Time and effort must be taken

by the attacker before its successful exploit can be expected.

Privileges Required (PR):

• None: Does not require access to settings or files to exploit.

• Low: Requires basic privileges associated with user roles.

• High: Requires significant administrative privileges to exploit.

User Interaction (UI):

• None: Does not require any user interaction to be exploited.

• Required: Requires a user to perform some actions before the exploit can be

successful.

Scope (S):

• Unchanged: Can only affect resources managed by the same authority.

• Changed: Can affect resources outside the same authority of the vulnerably

component.

Impact Metrics

Confidentiality Impact (C):

• None: No loss of confidentiality within the affect component.

• Low: There is a loss of confidentiality. Attacker will only be only able to get specific

information. The disclosed information is not of high value.

• High: All confidential information within the component is compromised by the

attacker. Disclosed information is of high value.

Integrity Impact (I):

• None: No loss of integrity within the affect component.

Jonathon Bourke C00242865

 pg. 30

• Low: Modification is possible but there is no free control over what data is modified.

Affected data is not of high value.

• High: Attacker has free reign to modify files protected by the component. Affected

data is of high value.

Availability Impact (A):

• None: No loss of availability within the affect component.

• Low: This will cause performance issues within the affected component. Repeated

exploits do not result in a complete Denial of Service. Impact is not of serious

consequence.

• High: Total loss in availability due to the exploit. This can also include when an

attacker can deny some availability, but the consequences are high.

(NIST, 2021)

Common Attack Pattern Enumeration and Classification (CAPEC)

Correlates a comprehensive list of common attack patterns and techniques which are

influenced by known vulnerabilities and weaknesses in Information technology.

These patterns and techniques include intelligence on how these attacks are conducted and

designed. Advice is included on how to mitigate their effectiveness.

CAPECs are identified by mechanisms of attack, their domain, and an identification number.

This helps cyber security personnel and developer pay particular attention to common

techniques and their prevention.

(MITRE, 2019)

National Vulnerability Database (NVD)

The NVD is the official United States governments library of standard based vulnerabilities.

To compile this extensive list, analysts are tasked with investigating CVEs that have been

added to the CVE dictionary. The analysis enumerates CVSS, CWE, CPE as well as other

important data like descriptions, advisories, and patches. The NVD record will be updated

accordingly if any pertinent information surfaces.

(NIST, 2021)

MITRE ATT&CK

MITRE ATT&CK is a library of tactics and techniques used by threat actors based on real

world observations. This is used as a framework to develop specific threat models for

organisations. The model provides classification of specific actions preformed in attack

Jonathon Bourke C00242865

 pg. 31

methodologies from an offensive and defensive standpoint. Defensive countermeasures are

also provided against the technique.

The behavioural model used in the framework contains three fundamental elements:

• Tactics: Short term goals in attack methodologies

• Techniques: The means in which the attack goals are commonly accomplished

• Documentation: Describes how the techniques were used by attackers historically

with other relevant data.

Mitre ATT&CK matrices contained a comprehensive collection of attack techniques used by

threat actors to accomplish specific goals. The techniques are all categorized under tactics

which are the objectives.

• Reconnaissance: The means in which intel is gathered about the target

• Resource Development: Acquiring the means to support the attack

• Initial Access: Strategies to gain a foothold in the network

• Execution: Methods to execute malicious code

• Persistence: Keeping access in an environment once gained

• Privilege Escalation: Gaining the privileges needed for further methods

• Defence Evasion: Tactics to avoid detection in the environment

• Credential Access: Techniques to steal account credentials

• Discovery: Tactics to gain information of the target infrastructure and networks

• Lateral Movement: Methods used to control remote systems

• Collection: Techniques to gather data to achieve a goal

• Command and Control: Methods to communicate with compromised systems

• Exfiltration: Tactics to steal data from target systems

• Impact: Methods to manipulate, destroy and deny service on systems

Enterprise Matrix

Jonathon Bourke C00242865

 pg. 32

Bug Bounty Programs

Many organisations offer monetary reward to the public for reporting vulnerabilities and

weaknesses in their externally facing assets. This allows developers to potentially patch

vulnerabilities before public disclosure.

The practice is becoming more popular as opposed to condemning white hat hackers. It can

be more cost efficient for organisations than bug testing themselves.

Prevention of vulnerabilities and their potential exploitation can occur in the following ways:

• Creating security guidelines following a security standard like ISO 27001

• Ensuring available security patches are installed for relevant systems when

vulnerabilities are discovered.

• Regular vulnerability scanning of the environment

• Following and adhering to various Cyber security advisories

• Protecting a networks perimeter through firewalls and router ACLs

• Implementing IDS and AV technology on company endpoints.

CONSEQUENCES OF EXPLOITED VULNERABILITES

Confidentiality: Vulnerabilities can lead to the compromise of confidential data. This would

include something like a SQL injection attack which steals user data.

Integrity: Vulnerabilities that target the accuracy or completeness of data. An example

would be an exploit which allows an individual to spoof a user.

Availability: Vulnerabilities that affect the availability of systems. The most common

vulnerability of this area is that which causes Denial of Service.

MALWARE

Ransomware: This is a type of malware which is designed to blackmail a victim into

preforming certain demands by encrypting files on a system. This renders them unusable for

the victim until a decryption is performed with the associated decryption key. This will be

retrieved either when the attacker’s demands are met, or a decryption can be performed

through already obtained keys usually from a third party.

Rootkit: Allows remote access to the infected device and is often obfuscated as a backdoor

for further actions. Very difficult to remove as AV technology are often unreliable at

detecting them and can reside at the kernel level.

RAT (Remote access trojan):

Jonathon Bourke C00242865

 pg. 33

Trojan: Malware that impersonates legitimate software to avoid detection and trick the user

to introduce it to a system. Can perform a wide array of actions depending on the intent of

the attacker.

Worm: A worm is a type of malware that can propagate over a network, spreading to other

hosts. Extremely infectious and is difficult to stop at the root before other hosts are

infected.

Spyware: Spyware aims to gather information about the user through illegitimate means.

The user’s behaviour is tracked through keylogging, web history and cookie theft. Motives

can range from monetary gain to espionage.

Adware: Malware designed to inject unwanted advertisements frequently while using a

browser. Adware is similar to trojans where it will commonly disguise itself as a legitimate

program or come bundled with another software download. Its goal is to generate revenue

for the creator through advertisements or gather user information to sell. It can be

dangerous as they are likely not confined by the same rules other companies must abide by

when gathering personal information. The advertisements also displayed can be dangerous

and lead to further compromises.

DATA EXFILLTRATION

Data exfiltration can be defined as the unauthorized exportation of data from a device. The

target of this type of attack is financial gain, reputation damage or sabotage. These types of

attacks are usually targeted to gain access to specific data.

On obtaining a foothold within an environment, threat actors will normally achieve

persistence to be able to stealthily monitor an environment for the next destination to their

target. Upon gaining access to this target, exfiltration can begin by uploading data to the

internet through the likes of cloud storage applications, emails and even DNS.

Mitigations

• Detect any suspicious connections malware may be using to communicate with a

command-and-control server.

• Monitoring DNS records for requests to cloud. Large data transfers can be detected

through the total number of bytes sent.

• Compromised accounts can be used to exfiltrate via email.

• Obfuscated techniques like TXT based DNS requests to send data to modified DNS

servers exist.

• Follow steps for removing persistent threats.

COMPRIMISED ACCOUNTS

Jonathon Bourke C00242865

 pg. 34

A compromised account is one which has been accessed by an unauthorized actor and

remediation steps to secure it have not taken place. This can occur due to vulnerabilities

that affect the confidentiality of credentials. It may also be due to a vulnerability to either

assume the user’s profile or bypass authentication controls.

Gaining access to user’s accounts can be lucrative to attackers as an initial access point into

an environment, gaining information, compromising linked components to the account and

using it as a staging point for further attacks like phishing.

Mitigations

• Enabling multi-factor authentication can make it incredibly difficult for attacks to

compromise an account

• Implement lockouts based on conditions like too many failed authentication

attempts from an IP address in a short period of time.

• Implementing minimum password strength policies

• Enforce frequent password change requirements on users

PERSISTENCE

Persistence enables bad actors who have compromised an environment to keep a foothold

for later use or if initial attack vectors have been neutralized. This ensures they have long

term access and are never truly removed. This is normally done through malware which is

obfuscated in legitimate folders, registry or scheduled tasks. Through these methods,

persistent threats can re-establish themselves on start-up.

Mitigations

• The best way to prevent persistent threats is to not get initially compromised in the

first place.

• Anti-virus solutions are relatively ineffective at detecting these. By design, these

files are designed to be stealthy through obfuscation.

• It typically requires human analysis to uncover what does not look right to be

guaranteed to eliminate persistent threats.

• The best mitigation is a developed security posture through techniques like

vulnerability management.

LATERAL MOVEMENT

This is a technique which allows attackers to move deeper into a network after initial access.

Lateral movement normal begins on the malicious actor obtaining valid credentials. This is

followed by reconnaissance on the local network to determine their goals.

Jonathon Bourke C00242865

 pg. 35

Ultimately the attacker will use techniques like “pass the hash”, “pass the ticket” and

keylogging to compromise other accounts as a form of persistence. Their goals also include

escalating their privileges in the environment to bypass security controls.

Mitigations

• Detecting lateral movement can be incredibly difficult due to the activities of the

attacker looking relatively normal.

• Like persistence, software solutions are relatively ineffective at detecting it due to

low footprint on the environment.

• Eliminating laterally moving threats normally requires human intervention through

threat hunting.

• Ensuring the latest patches are installed can help prevent these from establishing a

foothold like persistence.

DATA AND HARDWARE DESTRUCTION

Adversaries may opt to destroy data that could be stored on systems across the

organisations network. The destroyed data would likely be also made unrecoverable via

forensic means. This could be done by instead of deleted the data, it is instead overwritten

with random values. The decided attack vector would be used to cause both monetary and

reputational damage to the organisation. This destructive attack has even extended to

targeting hardware in the past. An example would be the famous Stuxnet attack. This was

achieved by modifying controls to cause parts to damage themselves through overwork.

Mitigations

• Due to threats like data destruction, having offsite data backups is highly

recommended. This can provide data restoration in the event of disaster.

• Avail of AV solutions to detect known malicious executables that that exist in these

attack chains.

• Continuous Cyber security monitoring can help limit the attack if the adversary

hasn’t managed to laterally move yet. The attacker may also be detected if they

managed to spread to other assets.

• Employing strong cyber security practices to prevent initial compromise.

PRIVILEGE ESCALATION

This is comprised of the techniques that adversaries use once gaining initial access to an

environment to gain higher permissions. This is typically achieved by testing other

vulnerabilities and weaknesses once inside. The techniques normally come with persistence

because OS elements that let an attacker persist are executed in an elevated setting.

Mitigations

Jonathon Bourke C00242865

 pg. 36

• Protecting user accounts through secure password policies and social engineering

education.

• Ensure latest security patches are installed.

• Use good practice with security in mind when coding. User input should always have

appropriate sanitisation.

• Design by least privilege and change any default or hardcoded configuration that

may exist.

COMMAND AND CONTROL

The adversary may try to communicate with the infected asset through Command and

Control. This is accomplished through a Command-and-Control Server to upload malicious

commands to the host. Cloud based providers are normally used to blend in with legitimate

network traffic.

Mitigations

• AV solutions can pick up known malicious files that could be used for command and

control. Some also benefit from being able to pick up on suspicious connections

made by processes.

• Ensure suitable account security is implemented and that users are aware of social

engineering techniques.

• Ensure Firewalls and IPS systems are configured to block known malicious

connections once detected.

PROJECT BRIEF WITH BRAINSTORM

Description. A tool that captures the attributes of validated vulnerabilities by a penetration

tester and manages the process and timeline of each vulnerability within an organisation.

Technologies.

(1) Windows or Linux (2) C#, C++, Python (3) GitHub

Will likely develop on Linux due to Kali Linux being the premier distribution used in

Penetration testing. I would prefer to use Python for this project due to familiarity

with the language and its text parsing features. Most tools or alternatives are

available on Windows. Would like to implement on Windows to display vulnerability

management interfaces.

(2) Provide a management interface to facilitate all aspects of vulnerability management

for an organisation.

Interface to display discovered vulnerabilities that have not yet been remediated.

These will be generated through scans preformed through the application and fed to

here. The vulnerabilities would be categorized based on severity.

Jonathon Bourke C00242865

 pg. 37

Interface for evaluating these vulnerabilities. This could be an area for remediation

steps to be entered by a user. Once completed this will be set to “in progress” in the

interface. Once remediation steps have been finished, the status can be set to

completed. This would prompt the system to attempt to exploit the vulnerability

again. The result of this would either close the issue or reopen it if the remediation

was unsuccessful.

Could offer the option to generate remediation steps if applicable or realistic.

Allow users to generate penetration testing reports from the application. This could

export the entire list of found vulnerabilities or may add a GUI which allows a custom

report to be created.

Add an interface to display items relating to the organisation’s security posture

(3) Data Reading: The capture and management of vulnerability data through its

lifecycle. Display: A GUI that allows users to store all attributes of vulnerabilities and

provide a dashboard displaying the current security status of an organisation.

The application will need to gather information from common penetration testing

tools. This can be done through APIs that the tools may offer (probably the better

approach especially for compatibility) or by pulling information from the tools

through CLI (Most Kali Linux tools offer this).

This data will then need to be parsed for useful information and passed to the

application for display and appropriately formatted in the display.

(4) Management: System contains management software to allow for multiple users.

Extraction: Relevant and useful information is extracted from the raw data and

shown in a user-friendly manner.

This means the application will need to support user authentication and creation.

This can be added with GUI components. Will require storage of user credentials,

current vulnerability items and security posture. Could store these on an SQL

database

Python Requests, Beautiful Soup, Wget – Could be useful to allow the application to make

HTTP requests to gather vulnerability information.

Create a script which queries the registry on host machines in environment on start-up. Wipe

previous applications for this host and store current list of these on a database. Use Python

requests to receive recent CVEs from NVD on applications. Display CVEs with affected hosts if

Jonathon Bourke C00242865

 pg. 38

there is a close match for the affected application in the environment on a dashboard. Could

prompt user to auto create a task in application.

TOOLS

Tool Operating System Cost Description

Nmap Linux/Windows/Mac
OS X

Freeware Going to be a key part of this project. Nmap
is used in the initial stages of penetration
testing for reconnaissance and to determine
what infrastructure the client has that can
be potentially exploited. Will be key if I want
to implement automated scanning with
minimal needed input from the user.

Zap Linux/Windows/Mac
OS X

Freeware Web proxy – Used for detecting web
application vulnerabilities. Nmap can
potentially detect hosted websites through
reverse DNS resolution on any address it
scans.

Burp Suite Linux/Windows/Mac
OS X

Freeware Web Proxy

Wireshark Linux/Windows/Mac
OS X

Freeware More for observing and confirming
vulnerabilities in real time and discovering
problem areas. Worth being aware of it but
will likely not be used. Location matters in a
network when using Wireshark ie you will
only see traffic which travels through your
switchport if connected to one.

TCPDump Linux Freeware Provides similar functionality to Wireshark
by allowing the analysis of captured traffic

Metasploit
Framework

Linux/Windows Freeware
and
Commercial

Can scan systems to check if they are
vulnerable to RCE exploits

OpenVAS Linux/Windows Freeware Vulnerability scanner tool which can scan
for exploits in
authenticated/unauthenticated situations

Qualys Linux/Windows/Mac
OS X

Commercial Vulnerability Management Platform used to

Aircrack-ng Linux/Windows/Mac
OS X

Freeware Wi-Fi security assessment tool, this tool can
perform both attacks against Wi-Fi and Wi-
Fi cracking.

John the
Ripper

Linux/Windows/Mac
OS X

Freeware Could try to implement a brute force attack
on any SSH, RDP, FTP etc ports found.
Catches weak set passwords.

Jonathon Bourke C00242865

 pg. 39

Sqlmap Designed for Linux.
Can run on
Windows/OS X

Freeware Can be used to validate SQL injection
vulnerabilities in applications that use SQL
databases in their stack.

Sqldict Linux Freeware Dictionary attack tool for SQL Server

Nessus Linux/Windows/Mac
OS X

Freeware Vulnerability scanning tool

STAT Windows Commercial Suite of tools:

STAT Scanner: Vulnerability scanner. Can
integrate with Nessus and ISS. Doesn’t use
client/server model. STAT must exist on the
host that is to be scanned.

Stat Scanner console can correlate results
from several hosts.

Reputed to provide a lot of information on
the vulnerability. Can remediate certain
vulnerabilities itself.

TARA Linux/Windows Commercial Vulnerability Scanner which highlights
found vulnerabilities based on their risk.

Cybercop Linux/Windows Commercial Vulnerability scanning, firewall scanning, OS
detection, DNS server tests. The ability to
add custom scripts to the application is
interesting.

SIMILAR TECHNOLOGY

Dradis Freeware This is an open-source vulnerability management tool
which is incredibly similar to what is requested in the
brief if not incorporating all of the requirements. Since
this is open source, the source code can be viewed
directly

Magic Tree Freeware A vulnerability management tool used for consolidating
penetration testing data. Data is imported manually via
XML and stored in a tree like structure

Faraday IDE Commercial Encompasses the brief by including all wanted features.
Unfortunately, is a pay to use tool. Features automated
vulnerability response which could be interesting to
investigate. Merges identical issues produced by
different tools

Serpico Freeware An open-source vulnerability management tool used to
alleviate report writing associated with Penetration
testing. Data is imported manually via XML. Features
Metasploit integration

Qualys Commercial Delivers a Vulnerability management platform. Delivered
as SaaS through the cloud. Continuously scans the

Jonathon Bourke C00242865

 pg. 40

environment based on pre-set and custom policies.
Automatically applies necessary patches to affected
hosts. Several tools are provided to find and mitigate
vulnerabilities.

Tenable.io Commercial Hosted in the cloud and runs on Nessus technology,
offers the industry's most complete vulnerability
coverage as well as the ability to anticipate which
security issues should be addressed first.

Rapid7
InsightVM

Commercial Rapid7's Insight cloud, which released in 2015, combines
Nexpose's vulnerability research, Metasploit's exploit
knowledge, global attacker behaviour, internet-wide
scanning data, exposure analytics, and real-time
reporting.

PROGRAMMING LANGUAGES

PYTHON

Python is a high-level Object-Orientated programming language that serves as a general-

purpose toolkit that focuses on readability through clear and logical mechanisms. It was first

released in 1991 and has seen numerous new features though updates since. Python is

consistently one of the most popular languages used in the world. As of August, it is the

most popular programming language according to the PYPL index.

Python is a multi-paradigm language that is designed to be highly extensible with a wide

range of libraries. Object orientated and structured programming are fully support. The

language utilizes dynamic typing where types are verified at runtime. Security is enforced

even though dynamic by causing an error at runtime instead of attempting to compute the

code.

Advantages

• Python is an easy-to-understand high level language. It is comparable to English in its

syntax

• Strong security practices with garbage collection, strong typing and does not allow

the use of pointers.

• Python is suitable for virtually any task with its vast array of libraries

• Python is open source which allows developers to release modifications of the

language.

• Runs on different platforms without requiring changes to source code

Disadvantages

Jonathon Bourke C00242865

 pg. 41

• Slow due to code being interpreted line by line

• Can require a large amount of memory compared to other languages.

• Because Python can throw runtime errors, it requires a large amount of testing

before releasing applications.

• Support for SQL databases is considered lacklustre compared to other languages

JAVA

Java is a high level, class-based and Object-orientated programming language developed by

Sun Microsystems. Java source files are compiled into bytecode which is then passed to and

executed by a Java Interpreter. This can be done broadly as Java Interpreters and runtime

environments exist on most systems.

Java is general purpose and is well suited for application development on the world wide

web. It is the primary development platform on Android and has a “write once run

anywhere” philosophy where an application could be developed for Windows but also will

run on other platforms like Linux. This is achieved by compiling source code to Java

bytecode instead of machine code.

Advantages

• Java’s syntax is easy to understand

• Java fully supports Object-orientated programming

• While it has had a previous reputation for insecurities, it has secure programming

language characteristics. These include garbage collection, no direct access to

memory and class security.

• Applications are automatically compatible with other platforms that have the Java

runtime environment present.

• Multi-threading is supported allowing more efficient use of the CPU.

• General purpose language that has support to complete virtually any task.

Disadvantages

• Has a high memory consumption

• Relatively slow language compared to the likes of C++

• Java code can be highly verbose

C++

C++ is a general programming language released as an expansion of the C language. Support

is provided for a wide range of features including Object-Orientated and functional

programming. The intention of C++ was to provide a language that has fast speed and low

memory usage for systems with limited resources. This is achieved through source code

being converted to machine code in one go and low-level memory manipulation.

Jonathon Bourke C00242865

 pg. 42

C++ boast many powerful features but also comes with the caveat of complexity and

obscurity. These features can come with security and performance issues like memory

management.

Advantages

• C++ is relatively portable and there is few issues porting applications to other

platforms

• Allows low-level manipulation of data

• Total control over memory management

• Efficient memory and execution times

Disadvantages

• Pointers can use a large amount of memory

• No use of built-in threads

• Security issues can be caused by friend functions, global variables, and pointers

• No garbage collection can lead to memory mismanagement

• Compile times can be long due to source code being assembled at once.

PHP

PHP is a general-purpose scripting language that was developed to accommodate web

development. Source code is typically executed on a web server by a PHP interpreter. PHP

comes with the advantage that it can embed HTML which results in interactive web pages.

PHP is primarily a language used in web development, being used in about 80% of

technologies stacks on applications on the internet. It has seen some use in other areas and

can be run directly from the command line.

Advantages

• PHP can run on any platform like Windows and Linux

• PHP has straightforward syntax and is easy to understand

• Plenty of library support to accomplish tasks

• Forms part of the LAMP (Linux, Apache, MySQL, PHP) stack which is free and easily

accessible to everyone.

Disadvantages

• Weak typing leaves it vulnerable to malicious input if not factored.

• Error handling is considered poor.

• Losing popularity to choices with more support.

Jonathon Bourke C00242865

 pg. 43

JAVASCRIPT

JavaScript is a high-level, multi paradigm language that features just in time compilation and

dynamic typing. It along with HTML and CSS forms the core of the World Wide Web.

JavaScript’s function here is to provide dynamic websites behaviour in the browser. 97

percent of websites use JavaScript for this purpose.

Although JavaScript was primarily a client-side language and required support for server-

side operations, recent support has made it an increasingly popular choice that can perform

server-side operations with frameworks like Node.js

Advantages

• JavaScript’s syntax bears similarities to Java and is relatively easy to pick up for those

with Java experience.

• JavaScript is gaining popularity over PHP for backend due to frameworks like Node.js.

It is now possible and very viable to write Web application entirely using JavaScript.

• JavaScript has stronger security characteristics over PHP.

• Due to being primarily executed in the browser, it reduces server load.

Disadvantages

• While JavaScript is generally stronger than PHP in security, it still suffers from a weak

type system.

• JavaScript is associated with client-side security issues. Weaknesses and

vulnerabilities can lead to malicious activity

• JavaScript can behave differently depending on the browser it is used in. This means

testing is required for all notable browser types.

RUBY

Ruby is a high-level interpreter language that serves general purpose needs for application

development. Its intention is to provide an object orientated scripting language which is

achieved. Ruby shares a lot of similarities between Perl and Python. The author states one

of the reasons the language was create was due to neither fulfilling his needs.

Ruby on Rails was written in Ruby and is an extensive framework used for web applications.

It is used extensively and includes all important web development structures.

Advantages

• Applications written in Ruby can run on multiple platforms.

• Strong security characteristics: Garbage collection, dynamic typing, and restriction

on memory access.

• Large standard library and access to more through RubyGems

Jonathon Bourke C00242865

 pg. 44

• Well suited for web development with Ruby on rails framework.

Disadvantages

• Relatively slow due to being an interpreted language

• Considered a niche language outside of web applications due to more extensive

support in other languages like Python

• Unique coding mechanisms can make it difficult to learn

PERL

Perl is a group of two general purpose interpreted high level languages that adopts many

features of C programming and shell scripting. The Perl family consists of Perl 5 and Perl 6,

now known as Raku. Both languages still see development in different directions.

Perl is procedural in nature and denotes variables with different sigils. These do not signify

the type of variable rather the type of expression. Perl like C uses automatic typing to

denote these. Perl uses references to allow users access to memory. This is a powerful

feature but comes with drawbacks like seen in C.

Advantages

• Can share library compatibility with C/C++ through XS or Swig

• Being open sources allows user to release modifications of the language

• Perl is exceptional at text parsing.

• Is faster at execution than most languages even though interpreted.

• Allow control over memory

• Perl is easy to get functioning on other platforms

Disadvantages

• Has weak security practices implemented like access to memory, weak typing and no

garbage collection.

• Can be tough to learn for beginners due to expressiveness of the language

• Bug fixing can be difficult with Perl due to the characteristics of error messages.

HASKELL

Haskell is a general purpose that is at its core a functional programming language. Haskell is

known for introducing innovative ideas like using type classes that allow type-safe operator

overloading. A purely functional language has the characteristics of having no side effects

from using functions.

Features include a strong static type system, lazy evaluation, lambda, type classes and type

polymorphism. It has many implementations including GHC (Glasgow Haskell Compiler).

Jonathon Bourke C00242865

 pg. 45

Advantages

• Haskell has great security features. These includes strong type safety, garbage

collection and no pointers.

• Haskell executables have good performance.

• Syntax is highly meaningful and concise.

Disadvantages

• Lack of widespread implantation means it doesn’t have as much support as other

languages

• Haskell code can be cryptic and difficult to learn

• Can be difficult to quickly build applications

PROGRAMMING LANGUAGE COMPARISON

 Java Python C++ C# PHP JavaScript Ruby Perl Haskell

More secure
default
programming
practices

Features
garbage
collection,
absence of
pointers,
packages,
and threads
makes a
secure
choice.

Has garbage collection, no
pointers and exception handling.
Uses dynamic typing. Types are
verified safely at runtime

No
detection
on buffer
overflow.
Pointers
can lead to
memory
mismanage
ment
Generally
insecure

Strong type
system,
garbage
collection.
Allows
pointers

Regarded
as
insecure
with no
default
input
validation
. Weak on
types.
Requires
additional
framewor
ks for
security.

Dynamic
typing,
garbage
collection and
no access to
pointers.
JavaScript is
weakly typed
due to
implicit
casting that
can be used.

Garbage
collection, no
pointers and
exception
handling.
Uses dynamic
typing. A
secure choice

No default
garbage
collection. No
pointers but
uses
references
instead. No
type system
implemented

Secure with
garbage
collection, no
pointers and a
strong type
system.

Web
Applications

Plenty of
libraries and
servlets
makes it a
popular
choice

Python has many frameworks like
Django, Flask and Turbogears

Can be
complicate
d and
difficult to
achieve.
Suffers in
querying
and string
manipulatio
n

Well suited
for building
web
applications
with
frameworks
like .NET

One of
the top
choices
due to
features.
Integrate
s with
HTML
coding.

Frameworks
like Node.js
allow
JavaScript to
be a stand-
alone
language in
web
development

Very flexible
and supports
many
frameworks

Perl is a great
choice due to
support and
features for
web
development.

Can
accomplish
the task with
frameworks
like Yesod,
Happstack
and Scotty.

Web Services Portable and
large number
of APIs for
XML makes
this a solid
choice.

Plenty of supporting framework to
complete the task

Supports
REST, XML
and WS02
framework

.NET
framework
fully supports
the task

Excellent
for web
services
with
plenty of
support

JavaScript can
easily achieve
the task with
recent
support

Supports a
wide range of
frameworks
with good
performance.

Has most
required
features to
implement

Supports
SOAP, REST,
WSDL and
USDL

Object
Orientated
based
abstraction

Is an Object
Orientated
language
with plenty
of features to
support

Fundamentally an object
orientated language

Supports
OO
programmi
ng
principles

Supports
object-
orientated
programming
but is missing
features like
multiple
inheritance

Supporte
d and has
good
readabilit
y but PHP
characteri
stics
make it
less than
ideal

Does not
directly
support but
has
prototype-
based OOP.
This uses
constructors
that can be
reused

Supports OO
Programming
by default

Supports OO
Programming

Requires an
extension.
Not
supported by
default

Reflection Huge
number of
operations to
support
reflection
and avoids
complication
s

Supports reflection with many
features.

Limited
reflection
functionaliti
es

Reflection is
supported
with the
Reflection
API. Is
performance
heavy

Supporte
d through
included
Reflectio
n API. Is
performa
nce heavy

Supported
through the
Reflect API. Is
performance
heavy

Supports
reflection

Has support
for full
reflection

Has libraries
to implement
some features
but does not
fully support
reflection

Jonathon Bourke C00242865

 pg. 46

Aspect-
Oriented
Programming

With
extensions
provide
support for
seamless
integration

Can be achieved through libraries
like aspectlib

Can be
challenging
due to C++
being a
static
language.
Supported
by
AspectC++

Achievable
through
RealProxy
Class. More
suitable than
C++ due to
stronger
typing

Can be
achieved
through
libraries.
Not ideal
due to
weak
typing

Can be
achieved
through
libraries

The package
AspectRuby
provides full
support

Built in
package called
Aspect for full
support

Not directly
supported but
has
extensions

Functional
Programming

No functions.
However, it is
easy to
mimic with
interfaces
and inner
classes

Offers support by default and has
plenty of libraries to supplement

Doesn’t
fully
support.
Can be
achieved
with FC++

Offers some
support with
first-class
functions
and closures

Supporte
d but
calls of
functions
are
verbose.

Functional
programming
is one of the
paradigms
supported in
JavaScript

Functional
programming
can be
achieved but
is not forced

Some support
with
references
and closures

Haskell is a
Functional
Programming
language by
default.

Batch
Scripting

Achieved
with the
runtime and
process class.

Python supports scripting by
default. A good choice

Libraries
allow
scripting
but
performanc
e is poor

Supported
but there are
better suited
languages for
the task

Supporte
d but
limited
security
and
scripting
options

Cannot be
done as
JavaScript is
primarily a
client-side
language

Scripting is
supported

Perl is a
scripting
language by
design

Possible with
HSH

UI prototype
design

Large set of
libraries to
easily
support the
class

Large number of libraries and
frameworks to develop UIs

Supported
but can be
difficult to
implement
by default

.NET
framework
makes C#
well capable
of the task

Not
supporte
d by
default.
Achieved
with
supportin
g
framewor
ks

Not
supported by
default.
Achieved with
supporting
frameworks

GUI
applications
can be
developed
easily

Plenty of
support for
GUI
applications

Has Libraries
for GUI
applications

Compiler
Efficiency

One of the
fastest
interpreter
languages
due to
combining
features of
compiler
languages.
Very
memory
intensive.

Relatively slow due to
interpreter languages
converting code line by line.
Memory efficient.

Compiled
language
which
converts
all code to
machine
code at
once. One
of the
fastest of
this type.
Memory
efficient.

C# is both
compiled and
interpreted
by a VM. It
benefits from
advantages
of both.

PHP is
an
interpre
ted
languag
e. This
suits
better
for web
applicati
ons due
to
compiler
s being
less
efficient
compilin
g rarely
used
code.

JavaScript
engines use
just-in-time
compilers
for
improved
preformanc
e over
interpreters
.

“Just In
Time”
Compiler
converts
code to
machine
code. Based
off C++

Interpreter
language
converts
code line by
line

Can be
either
compiled or
interpreted
depending
on
implementa
tion.

(Dwarampudi, Dhillon, Shah, Sebastian, & Kanigicharla, 2010)

STORAGE/DATABASES

To achieve the requirements of the brief, an application storage solution will be needed. At

a minimum, user credential and vulnerability records will have to be kept. In order have a

basis for research, the following Database management solutions were found based on

popularity

Jonathon Bourke C00242865

 pg. 47

(Statista, 2021)

Oracle

Oracle is a multi-model database management system that is developed and maintained by

the Oracle corporation. Oracle Database offers on-premises, cloud, and hybrid solutions of

its users. It currently is the most used database management system overall. This is due to

many innovative features that make it an appealing choice to developers. Oracle Database

Express Edition provides a free solution and the ability to upgrade if the free specifications

are outgrown.

Advantages

• ACID transactional guarantee

• Instant CAP reliability as a single server.

• Supports Structured, Semi-Structured, Spatial Data and RDF store

• Provides Blockchain tables

• Suitable for both OLTP and OLAP

• Can be used for free with Oracle Database Express Edition and upgraded to

commercial versions as necessary

• Provides a good solution when a converged or master database is needed

• Excels with traditional transactional workloads with structured data.

Disadvantages

Jonathon Bourke C00242865

 pg. 48

• Costly if more than the free version is required

• Does not feature multi-Master ACID transactions

• Poor with Semi-structured data

• Does not perform as well with graph-like data as other solutions

MySQL

MySQL is an open-source relational database system. It forms a component of the famous

LAMP stack composed of Linux, Apache, MySQL, and PHP. It is a close second in the most

chosen database management solution. MySQL is offered under two different versions: the

open-source community server and the commercial Enterprise server. These are both built

on the same code base, but Enterprise has several commercial extensions which can be

used as plugins.

Advantages

• It provides an ACID transactional guarantee

• Instant CAP reliability

• Offers sharding which results in high availability and throughput. This also comes

with low latency and linear scaling.

• Provides multi-master ACID transactions

• Excellent choice when both OLTP and OLAP are needed

• Supports both structured and semi-structured data.

• Provides excellent data security

Disadvantages

• Unsuitable for distributed SQL

• Better solutions with graph-like data

• Poor with semi-structured data

• Does not provide Advanced data protection functionalities like masking, obfuscating

and throttling

Jonathon Bourke C00242865

 pg. 49

BIBLIOGRAPHY

Souppaya, M., & Scarfone, K. (2013, July 1). Guide to Enterprise Patch Management Technologies.

Retrieved from nist.gov: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-

40r3.pdf

Barros, A. (2019, October 25). The New Vulnerability Management Guidance Framework. Retrieved

from Gartner: https://blogs.gartner.com/augusto-barros/2019/10/25/new-vulnerability-

management-guidance-framework/

Chaudry, A., Coley, S. C., Crouse, K., Davis, K., Ellis, D., Garrison, P., . . . Vohaska, B. (2021, July 26).

2021 CWE Top 25 Most Dangerous Software Weaknesses. Retrieved from

https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html:

https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html

CWE. (2021, March 13). About CWE. Retrieved from Common Weakness Enumeration:

https://cwe.mitre.org/about/index.html

Dwarampudi, V., Dhillon, S. S., Shah, J., Sebastian, N. J., & Kanigicharla, N. S. (2010, August 10).

Comparative study of the Pros and Cons of Programming languages Java, Scala, C++, Haskell,

VB .NET, AspectJ, Perl, Ruby PHP & Scheme. Retrieved from arxiv.org:

https://arxiv.org/pdf/1008.3431.pdf%26embedded%3Dtrue

FIRST. (2021, October 20). Common Vulnerability Scoring System v3.1: Specification Document.

Retrieved from www.first.org: https://www.first.org/cvss/v3.1/specification-document

Ghasemzadeh, M. (2015, August 1). The CVSS base score formula. Retrieved from ResearchGate:

https://www.researchgate.net/figure/The-CVSS-base-score-formula-12_fig5_290624055

IBM Security. (2021). Cost of a Data Breach 2021. New York: IBM Security.

Kamaruzzaman, M. (2021, January 20). Top 10 Databases to Use in 2021. Retrieved from

towardsdatascience.com: https://towardsdatascience.com/top-10-databases-to-use-in-

2021-d7e6a85402ba

Mell, P., Bergeron, T., & Henning , D. (2005, November 1). Creating a Patch and Vulnerability

Management Program. Retrieved from tim.kehres.com:

https://tim.kehres.com/docs/nist/SP800-40v2.pdf

Mell, P., Scarfone, K., & Romanosky, S. (2007, July 1). A Complete Guide to the Common Vulnerability

Scoring System Version 2.0. Retrieved from nist.gov:

https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=51198

MITRE. (2013, February 14). CCE List — Archive. Retrieved from CCE:

https://cce.mitre.org/lists/cce_list.html

MITRE. (2019, April 04). About CAPEC. Retrieved from CAPEC:

https://capec.mitre.org/about/index.html

Jonathon Bourke C00242865

 pg. 50

Mitre. (2021, March 3). Frequently Asked Questions. Retrieved from CVE:

https://cve.mitre.org/about/faqs.html#cve_record_descriptions_created

NIST. (2021, October 19). Common Vulnerability Scoring System Calculator. Retrieved from NIST:

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?name=CVE-2016-0051

NIST. (2021, October 19). Common Vulnerability Scoring System Calculator. Retrieved from NVD:

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator

NIST. (2021, October 22). CVEs and the NVD Process. Retrieved from National Vulnerability

Database: https://nvd.nist.gov/general/cve-process

NIST. (2021, October 29). NIST Risk Management Framework Overview. Retrieved from

www.nist.gov:

https://www.nist.gov/system/files/documents/2018/03/28/vickie_nist_risk_management_f

ramework_overview-hpc.pdf

NIST. (2021, July 16). Security Content Automation Protocol . Retrieved from NIST:

https://csrc.nist.gov/projects/security-content-automation-protocol/specifications/cpe

Risto, J. (2020, July 6). Vulnerability Management Maturity Model Part I. Retrieved from SANS:

https://www.sans.org/blog/vulnerability-management-maturity-model/

SANS. (2021, February 4). CISO Mind Map and Vulnerability Management Maturity Model. Retrieved

from sans.org: https://sansorg.egnyte.com/dl/p6YbmrhJy6

Shanks, W. (2015, May 21). Building a Vulnerability Management Program – A project management

approach. Retrieved from www.giac.org: https://www.giac.org/paper/gcpm/344/building-

vulnerability-management-program-project-management-approach/117144

Statista. (2021, June 1). Ranking of the most popular database management systems worldwide, as

of June 2021. Retrieved from statista.com:

https://www.statista.com/statistics/809750/worldwide-popularity-ranking-database-

management-systems/

