

JONATHON BOURKE

C00242865
Project Report

CONTENTS

Abstract .. 2

Description of Submitted Project ... 3

Assets ... 5

Policies ... 6

Vulnerabilities .. 7

Playbooks ... 8

Ticketing System... 9

Ticket Object .. 9

Queue .. 10

Vulnerability Metrics .. 10

Authentication ... 12

Django Administration ... 12

Web Application .. 12

Conformance to specification ... 13

My initial experience .. 14

Personal Learning ... 14

Project Review .. 14

Acknowledgements .. 16

ABSTRACT

This document outlines the outcome the finalized vulnerability management tool and how

the brief requirements were satisfied. In the process of describing the finalized product, I

will describe my successes in development and summarize the challenges faced in achieving

the end-result. While discussing the obstacles encountered, I will mention the solutions to

referenced points and how they have affected the final submission.

INSTRUCTIONS

Clone the Project from GitHub: Source

Django

Install Virtual Environments: pip install virtualenv

Create your Virtual Environment. Name does not matter: virtualenv “name as you like”

Install Django: pip install Django

Install Project Dependencies: pip install -r requirement.txt

Navigate to the project file “settings.py” and update the database settings depending on the

technology and credentials you are using. MySQL Example below:

DATABASES = {

 'default': {

 'ENGINE': 'django.db.backends.mysql',

 'NAME': 'vuln_database',

 'USER': 'vuln_user',

 'PASSWORD': '******',

 'HOST': 'localhost',

 'PORT': '',

 }

Navigate to folder with manage.py in CLI and run commands:

$ python manage.py makemigrations

$ python manage.py migrate

Create a superuser to log in to the application: python manage.py createsuperuser

Start the server: python manage.py runserver 8080

Angular

Install Node.js: Source

Run this command: npm install

https://github.com/C00242865/VulnManagementTool
https://nodejs.org/en/

Navigate to Angular project folder in CLI and run the command: ng serve --port 8081

Use a browser of your choice to access the application at http://localhost:8081/login and

login with the Superuser you created

http://localhost:8081/login

DESCRIPTION OF SUBMITTED PROJECT

The final product is a platform-agnostic vulnerability management aid that assists in all

areas of the vulnerability management cycle. The application supports multiple regular and

super users through the application and Django Administration.

The system implements CRUD operations regarding any object that is relevant to the

vulnerability management lifecycle. The following objects were supported in the final

implementation:

• Assets

• Policies

• Vulnerabilities

• Playbooks

ASSETS

Assets combine to form an inventory and were defined under the following key

characteristics:

• Hostname

• Operating System defined by CPE system

• Risk

• Expected SLA time

• Hardware and Application list defined with CPE system

• Category

POLICIES

Policies can be assigned to assets to assist in defining environmental CVSS values. Policies

require the following properties

• Confidentiality Requirement

• Integrity Requirement

• Availability Requirement

• Category

VULNERABILITIES

Vulnerabilities are core to the system and are critical to defining both the ticketing system

and risk severities. This object contains the most details to encapsulate target vectors,

threat characteristics and vulnerable targets.

• CVE Identifier

• SLA

• Applicable CWE

• Privileges Required

• User Interaction Required

• Attack Vector

• Scope

• CIA Impact

• Report Confidence

• Exploit Code Maturity

• Risk

• Description

• Vulnerable CPE Uris

User need not worry about creating vulnerability records manually as there will be

automatically retrieved from the NVD database and potentially matched against Assets with

affected CPE Uris.

PLAYBOOKS

Describes the path vulnerability remediation will take through the system. Offers the default

playbook at baseline that follows core patch management methodologies. Adding values

modifies the group responsible for that stage of remediation.

• Category

• Patch Validation

• Patch Verification

• Rollout

• Notes

TICKETING SYSTEM

I will provide a high-level overview of the ticketing system

TICKET OBJECT

Tickets are the components that house all necessary data regarding the remediation of a

vulnerability. Creating the ticket object was a prerequisite for creating remediation flow

through the system. The properties of a ticket are too long to list here in the document as

they provide:

• Remediation Characteristics

• Threat scores

• Ownership Properties

• Affected assets

• Vulnerability attributes

• Progress features

• Logging

A ticket is created by selected a known vulnerability in the system. Using the CPE matching

system, assets are automatically added. Threat scores are calculated on creation through

relational data. As the ticket flows through the system both progress and timestamps are

logged. Results of the successes of the ticket are logged at closure.

QUEUE

The queue allows users to view all tickets in their system lifecycle at various patch

management stages. Interacting with a ticket will provide further information to read and

edit.

VULNERABILITY METRICS

I was able to successfully provide metrics by creating APIs to retrieve the required data from

the backend through ngxcharts. A timeline filter is given to create specific results and

control monitoring over the current situation.

A pre-set vulnerability dashboard provides useful visuals like the following.

A ticket dashboard regarding remediation statistics is also provided.

AUTHENTICATION

The following is a description for implemented authentication mechanisms

DJANGO ADMINISTRATION

Both Super Users and regular users can be created through the Django Administration

script. A Username, email and password is needed.

WEB APPLICATION

Superusers may use the Web GUI administration to create and manage regular users.

The application requires authentication to access, and this is provided though both basic

and JWT mechanisms. JWT appends a token which can be used to allow a user’s session to

persist even if they navigate away from the application. This will expire after 60 minutes.

CONFORMANCE TO SPECIFICATION

A feature that was not proposed in the initial brief was the CPE URI system to accurately

correlate known technologies on an asset and to match affected resources to known

vulnerabilities. This later enriched another breakthrough feature that allows the application

to parse the NVD vulnerability database, extract the useful information and actively update

its definitions through scheduled tasks on the server.

Regarding missing components proposed, the only feature that was completely left out was

the integrated vulnerability scanner. This was mainly due to time constraints and the work

required to add value to the application as I would have to figure out how I was going to be

able to parse the results and make it compatible with my backend. Further, I would need to

create additional GUIs to be able to configure, schedule and view the scans. Integration

which I initially thought would be a challenge would have been easily achievable with

Python Libraries.

Configurable dashboards to not make the final product as similarly it would much more

work than I initially thought. The main issue here is Angular graph libraries are very strict

when it comes to serialized data they will accept. I was able to overcome this to provide two

pre-set dashboards but the extra time it would take to implement in general was not

possible in the time allotted.

Due to the proposed features being proposed as optional, I feel it does not take away from

the overall achievement of the project

MY INITIAL EXPERIENCE

When I initially decided on the technologies I would use for this project, I was largely

unfamiliar with my technology stack. Regarding Django, I had Python experience but none

concerning using the web framework itself. Due to my experience with the language, this

was relatively easy to pick up and only required learning Django concepts like Query Sets,

I had no experience with AngularJs or any frontend that utilises typescript. I personally

found typescript to have a steep learning curve as many of the reasons that I chose it were

very technical to implement. I do believe it was the right choice as the final implementation

has a professional feel with the help of Angular features and libraries.

Before starting this project, my skills in web development were limited. Aside from basic

PHP knowledge, I had no idea how to configure frontend/backend details or how to bring a

hosted application into production and ready to serve clients. This was relatively easy as

there is plenty of documentation for Django or Angular to bring it to fruition.

PERSONAL LEARNING

The most important learning aspect for this project was developing consistency by setting

aside time every day to work on the implementation. This allowed me able to finish

relatively comfortably and avoid stress relating to trying to meet deadlines. I also learned

the importance of allotting time for adequate planning before commencing development in

similar projects

PROJECT REVIEW

My opinion on my project is that it was largely a success as it fulfils the specified

requirements in the brief and goes beyond with additional features to assist the

vulnerability management lifecycle. Examples are actively pulling vulnerabilities from NVD

and the CPE URI system.

The only limiting factor in my view was time. I had high level ideas of how to implement the

missing features. To fully implement my original specification, I would likely need another 3-

4 months as the integrated scanner required a suitable GUI and making results compatible

with my backend.

If I was to start this project again, I would focused more on pulling resources from the

internet like what was done in the final implementation with active vulnerability definition

updates. I feel there could be more value to extract from the data, but the feature was

introduced near the end. I also had to apply my finishing touches and create

documentation. This also applies to the CPE system. There is potential to divide this into

application, hardware, and operating system. The Uri fields could be used to generate better

matches regarding vulnerable technology. The current implementation matches based on

vendor and product, but it would be possible to code version detection such as if it less than

or equal to the corresponding Uri value.

My advice for someone who wants to develop their own version of the application would be

to spend time learning the technology stack you want to use before developing. I initially

tried to immediately code using material I had found online but was unable to adapt the

operations into my project. After sitting down for a few days and learning how to code core

web application functionality, I was in a better place to continue with the more specific

features.

Regarding my technology choices, I believe there isn’t a better possible backend choice than

Django due to extensive library support for relevant features not available in other

languages. Python is an easy language to pick up due to pseudocode-like syntax and query

sets which simplify SQL operations.

AngularJs allowed me to achieve a professional application with less work due to its

modules. DOM based operations make using the application feel fluid and allow SQL

operations to happen through typescript. Other front-end frameworks like React and VueJs

may be interesting to investigate however I feel Angular did not have any shortfalls when it

came to library support and features.

MariaDB was a great choice personally for the project as it provided me an open-source

solution that was very similar to SQL. PostgreSQL may have been the better choice here

with Django as many of the model options require it such as Array fields. This would have

been very useful for the CPE Uri system as it allows the use of arrays in the database tables.

I had to resort to storing data in a CSV format to circumvent this. Something like MongoDB

may have been useful as I had to work with serialized data throughout the project.

MongoDB allows supports storing data in a Json format.

ACKNOWLEDGEMENTS

I would firstly like to give a special thanks to my project supervisor Paul Barry for his

continuous guidance from the start of my project. Paul’s advice has been invaluable

throughout the year and kept me on the right track.

I would like to thank the lecturers who I had the pleasure of earning my degree under. If it

was not for the accumulated knowledge gathered throughout my bachelor’s degree, my

finished project would have not been of the same quality.

Finally, I would like to thank my classmates who have made the four years a unique

experience and have helped keep me motivated throughout my college journey.

