
       QR Code Steganography | Final Report | Kieran Carroll 
 

1 
 

 

QR CODE STEGANOGRAPHY 
FINAL REPORT 

 

 
  

By Kieran Carroll 

C00241073 

2021/2022 

Y4 Cybercrime & IT Security 

Institute of Technology Carlow  

Project Supervisor: James Egan 

 

 

 



       QR Code Steganography | Final Report | Kieran Carroll 
 

2 
 

Table of Contents 
Table of Figures ....................................................................................................................................... 2 

Introduction ............................................................................................................................................ 3 

Project Description.................................................................................................................................. 3 

The Tool .............................................................................................................................................. 3 

Application User Interface .................................................................................................................. 4 

Project Review ........................................................................................................................................ 7 

Aspects achieved ................................................................................................................................. 7 

Aspects not achieved .......................................................................................................................... 7 

Problems Encountered ....................................................................................................................... 8 

What I learned ........................................................................................................................................ 9 

What I would do differently .................................................................................................................. 10 

Testing ................................................................................................................................................... 10 

Conclusion ............................................................................................................................................. 12 

 

 

Table of Figures 
Figure 1 - Welcome Window .................................................................................................................. 4 

Figure 2 - Generate a QR Code Window. ................................................................................................ 5 

Figure 3 - Embed a Message Window ..................................................................................................... 5 

Figure 4 - Extract a Message Window ..................................................................................................... 6 

Figure 5 - Scan Window .......................................................................................................................... 6 

Figure 6 - Stego image with noise ........................................................................................................... 9 

Figure 7 - Original QR         Figure 8 - Stego QR .................................................................................. 11 

Figure 9 - QR Code ................................................................................................................................ 12 

 

 

 

 

 

 

 

 



       QR Code Steganography | Final Report | Kieran Carroll 
 

3 
 

Introduction 

This document outlines the end product that was created as a result of implementing this project. An 

overview of the project is provided and the different functionality it offers is described and illustrated 

with screenshots. A review of both the aspects I failed to achieve alongside the aspects that I achieved 

is reviewed and compared to the initial features that were presented in the functional specification. 

The problems I encountered through the course of the development are also discussed. Finally, we 

review the tests that I carried to verify the quality of the tool’s user interface and its products. 

 

Project Description 

Steganography was successfully implemented in this project through the use of the least significant 

bit method. This method works by taking advantage of the high level of redundancy that images have 

by swapping the least significant bits (the right most bit) in an image with the bits of our message, 

essentially embedding the message in a manner that does not visually change the image. By using this 

method, we achieve the goal of steganography which to provide secrecy by masking the fact that there 

any message present as the image does not appear to be altered in any way. The project focuses on 

the use of QR codes as a cover medium for steganography, however it also has the capability to use 

other images. The use of QR codes as a cover medium has some benefits over coloured images such 

as the being more size efficient as they are binary images which means many adjacent pixels have the 

same values which makes them especially compressible. The message encoded in the QR code, which 

is separate from the embedded message can also be used to deceive the adversary. 

 

The Tool 

The application provides the user with the capability to perform 3 core actions and provides a fluid 

interface for each activity. These 3 actions include generating a QR code, embedding a message and 

extracting a message. Additionally, the user can also choose to encrypt the message before 

embedding and decrypt it when extracting. The tool was developed as a windows desktop application 

using the Eclipse IDE and the java programming language. To develop the graphical user interface 

(GUI) the window builder plug-in was used in Eclipse. The ZXing library was used for the creation and 

reading of QR codes, and the bouncy castle library provided the necessary capabilities to perform AES 

encryption and decryption. 

 



       QR Code Steganography | Final Report | Kieran Carroll 
 

4 
 

Application User Interface 

 

Welcome 

In this window the user is shown a welcome message and 3 buttons are provided for navigation to 

either the embed, generate QR or extract windows. 

 

Figure 1 - Welcome Window 

 

Generate a QR Code 

On this page the user can generate a QR code and save it to their computer. They must enter a 

message which is capped 4,296 characters, this is the max number of alphanumeric characters a QR 

code can hold. The size the user wants the image to be must also be entered, the default is already 

set to 300x300, although a user can enter any size, they want up to 6000. Next the user should select 

the level of error correction that they want, which can be L, M, Q or H, the default is set to L. Finally, 

the user clicks the “Generate QR” button which the generates the QR and displays it to them the image 

box. The user can now save the QR code by navigating to File, then save where they can select a folder 

on their computer where they want it to be saved. The image must be saved in either the PNG or JPG 

image format. 



       QR Code Steganography | Final Report | Kieran Carroll 
 

5 
 

 

Figure 2 - Generate a QR Code Window. 

 

Embed a Message 

This page allows the user to upload a QR by navigating to file then uploading an image from their 

computer. The uploaded image must be in the PNG or JPG image format. The user then can enter a 

message of their choice and a key they if they choose to, which cannot be greater than 16 characters. 

The user then clicks embed which encrypts the entered message and embeds it into the least 

significant bits of the uploaded image. If the message is successfully embedded, then a message pops 

up that states that the message has been embedded. The user can then save the altered image to 

their computer by navigating to file then save. The image must be saved in either the PNG or JPG 

image format. 

 

Figure 3 - Embed a Message Window 



       QR Code Steganography | Final Report | Kieran Carroll 
 

6 
 

Extract a Message 

The user is able to upload an image which is of JPG or PNG format on this page. The uploaded image 

is displayed in the image box. The user then clicks extract which takes the message out of the image 

and displays it in the textbox and a message pops up to say the message has been extracted 

successfully. If the message was encrypted, then the user must enter the same key that was used to 

encrypt into the key textbox. The user then clicks extract and the message is taken out of the image 

and decrypted, then displayed in the textbox. 

 

Figure 4 - Extract a Message Window 

 

Scan 

On this page a user can upload an image of a QR and scan it. 

 

Figure 5 - Scan Window 



       QR Code Steganography | Final Report | Kieran Carroll 
 

7 
 

Project Review 

Through the research and development of this project I was able to achieve some aspects I had set 

out to do and also others that I was not able to implement due to several issues, this section of the 

document outlines these points and I then discuss what I would do differently if I were to start the 

project again. 

 

Aspects achieved 

I was able to achieve the following 6 core functions that I outlined in the functional specification: 

1. QR code generation 

2. Entering a message & key 

3. Embedding the message 

4. Extracting the message 

5. Encrypting the message 

6. Decrypting the message 

From the start of the project these 6 aspects were the core pieces of functionality I wanted to have 

working by the end of the project, although I did have to revise and alter the way the steganographic 

method for embedding and extraction worked numerous times. I created a technique that successful 

embeds the message and extracts it. The final product provides a fluid interface which allows the user 

to easily perform all 6 actions. 

 

Aspects not achieved 

I was not able to fully utilize the capabilities that QR codes have. I wanted the message to be hidden 

inside of the QR code when it was being generated rather than in the image of the QR code. In doing 

this the QR code could be printed and a picture of the printed QR code could be used to extract the 

message. The tool I have created is not able to do this as the message is embedded into the image of 

the QR code rather than the data codewords, thus when printed onto paper and a picture is taken and 

uploaded to the tool, the message is lost. This problem is outlined in the testing portion of the 

document. It’s noted that a QR that has a URL encoded in it can be scanned which takes the individual 

to a site that has the digital version, they can then upload the digital version to the tool and extract 

the message. It’s a two-step process rather than one. 

 



       QR Code Steganography | Final Report | Kieran Carroll 
 

8 
 

Problems Encountered 

Creating the steganographic methods for embedding and extraction proved to be the hardest part of 

the project, especially because I wanted to make full use of QR codes as a cover medium. This meant 

exploiting the error correction feature that QR codes have. The initial method of embedding was 

supposed to work by replacing some of the data codewords when the QR code was being created with 

the bits of our message. Therefore, when the QR code is read then the altered data codewords are 

seen as errors and are corrected by the error correction feature, thus the message would be hidden 

in the QR code. To extract the message, we reverse the embedding procedure by reading the QR and 

after the masking step we extract the hidden data, followed by the original data which is recovered 

by the error correction codewords. Implementing this technique proved to be very difficult as it 

required that I create a modified version of a QR generator and reader, as they would have to both 

agree where this data is placed and where it ends when the QR code is created and read. Such a task 

was too difficult, and my technical ability limited me from being able to do this. 

The second technique I tried to implement involved first generating a QR code, then an empty image 

that was equal to the size of the QR code. We would then insert the encrypted secret message into 

the empty image, the message would be scrambled all over the image. To embed the message, we 

would then XOR the empty image with the QR code. To extract the message the QR code would be 

read, then a second QR code would be generated with the same dimensions. The newly generated QR 

code would be XORed with the initial QR which would give us the scrambled image that has the secret 

message inside of it. Finally, the image would be unscrambled, and the message extracted and 

decrypted. I spent most of the time working on implementing this technique, especially the image 

scrambling portion which was the hardest bit as I had to educate myself on the topic of image 

scrambling, and how it is performed using chaotic maps, then attempt to translate that into java code. 

Overall, I wouldn’t have been able to get the tool in a working state using technique as I would have 

run out of time. 

To overcome the challenge of creating a steganographic algorithm with limited time, I created a 

method for embedding and extraction using the LSB technique. This involves embedding into the least 

significant bits of the image. Using this method, I was able to build the tool. However, implementing 

this method also wasn’t straight forward as I encountered issues when creating the embedding 

algorithm as seen below noise can be seen in the image at the top of the image. 



       QR Code Steganography | Final Report | Kieran Carroll 
 

9 
 

 

Figure 6 - Stego image with noise 

The reason this happened was because I was using the buffered image type of byte binary, which 

means that there is one bit per pixel (either 1 or 0) thus this caused an issue because I was 

implementing it in such a way that would only work with images that have a bit depth of 8 or greater. 

Once I realised this, I change the image type which solved the issue. 

 

What I learned 

Through the research and development of this project I have learned a great deal about 

steganography, QR codes, Java programming and various other concepts. With regards to 

steganography, I had never heard of it before and from my research I gained in depth knowledge on 

the subject including the various techniques that can be used. I had to learn how QR codes worked, in 

particular the encoding and decoding procedures and how they would work as a container for 

steganography. My overall programming skills in Java also improved as a result of implementing this 

tool and I learned how to use the window builder plugin within the eclipse IDE to build the GUI for the 

tool. Through using the ZXing library I was able to learn how to build and read QR codes in Java. While 

trying to implement image scrambling in the project I had to read up on how image scrambling is 

performed using chaotic maps, especially ones that work with square matrices, this included the tent 

and baker maps. From this I had to understand the properties of chaos and how I can utilize it to 

generate chaotic keys that I would need for image scrambling. Investigating this niche topic allowed 

to me to gain an understanding of image scrambling and how it can be used lower the chances of 



       QR Code Steganography | Final Report | Kieran Carroll 
 

10 
 

steganalysis attacks finding the secret payload. Besides the improvement of my technical skills 

improving, I also learned how to persevere when challenges arose. 

 

What I would do differently 

If I could start this project again, I would have changed my approach to tackling this project. I would 

have used python instead of Java, although I do not know python, I think it would not have been 

difficult to learn and it would have provided me with more libraries which would have made 

development easier. I also would’ve started by understanding how QR code work fully, before trying 

to implement anything. I would delegate tasks appropriately and finish one before moving onto the 

next one, I found myself jumping between the various tasks I had to do which led to confusion. 

 

Testing 

 

QR Code Testing 

QR codes generated with the tool that contained a secret message were tested to see if the encoded 

message (not the secret message) could still be retrieved by scanning them with a smartphone both 

digitally and when printed on paper, in both cases they worked. A second test investigated whether 

the secret message could be retrieved after the stego QR code is printed out and a picture is taken of 

that QR code using a smartphone, then the picture is uploaded to the tool and an attempt to extract 

the secret message is made. The result was that the tool could not find the secret data, it was lost. It 

also noted that conversion between images that use lossy and lossless compression can in some cases 

also cause the data to be lost. Besides these two issues the secret message can be successfully 

retrieved with this tool from the stego image. It’s noted that this tool works with both PNG and JPG 

images. 

 

UI Testing 

All functionality was thoroughly tested to check if the application works as intended. I tested the input 

fields to see what happens if the user enters the incorrect data type into a field, such as in the image 

size field on the generate QR window. When this happens, the application stops the user from entering 

the incorrect datatype. Characters restrictions on certain fields were also tested by entering the max 



       QR Code Steganography | Final Report | Kieran Carroll 
 

11 
 

number of characters, the result was the appropriate error message was reflected back to the user. 

Where a user does not enter information into a text field that is required then the application would 

not proceed with the action and inform the user that information is required. Finally, if the user 

attempts to upload an image that is not of the PNG or JPG image format, then the application produces 

an error message back to the user. Overall, the UI works as expected and there is no apparent way to 

break the application. 

 

PSNR 

In this test we compare the difference between the original QR code and the QR code that contains 

the secret message using peak signal to noise ratio (PSNR). High PSNR indicates that the stego image 

is of good quality. The test results are outlined below. The result when PSNR is calculated between 

these two images is 84.962560980206973. It’s noted that PSNR will decrease as the payload size 

increases. Additionally, by visually inspecting the two images there is no visual discrepancies between 

the two. 

 

 

Figure 7 - Original QR         Figure 8 - Stego QR 

 

 

 



       QR Code Steganography | Final Report | Kieran Carroll 
 

12 
 

Embedding Capacity 

To display the embedding capacity that any image uploaded to the tool has I created a method that 

calculated the amount of secret data the image could hold. This worked by multiplying the width x 

height x 3. We multiply by 3 because 3 bits of our secret message can be stored in each pixel of the 

image. This gives us the number of bits of the secret message that the image can hold, to get the 

number of bytes we divide by 8. We minus 32 from this number because we leave the first 32 bytes 

of the image to store the length. The result of this is the number of characters the image can hold. 

 

Figure 9 - QR Code 

The embedding capacity of the above QR code image is calculated as follows 3x300x300 = 270,000 

bits / 8 = 33,750 bytes – 32 = 33,718 bytes. This image can hold 33,718 characters of our secret 

message. 

 

Conclusion 

Overall, I consider the end product of this project to be a success. Although I was not able to fully 

utilize the physical aspects of QR codes as a container for steganography, I still hit all the main points 

I outlined in my functional specification, creating a fully functional application that allows the user to 

perform steganography and encrypt the payload. 


