Contents

INTEFOTUCTION weeeeeeeeeeeeeeseessssesessssssssesesssssssssssssesssss e85 8558580 2
PPOJECL PN coooeeeeesesssesssseeseesss s sesssss s sssssssss s sssssssssssssses 2
SYSEEM ATCNIEECEUIE c.cvvvvvreeesveevvsresssssesssee 3
Dat@DASE AESIGN ...uuuuiieevererreeeeeessssssissssssssssssssssssssssssssss s ssssssss s s s s s s8R R R RS SR R 4
TADIES .ooeeeeeeeeeeseeessesseessesseseessssse s8R 4
SQL STAEEMENTS ooooeeeeevevssssess s sssssssss s ssssssssssssssssssssss 4
UIML DI@QI@IMS ...ovveeeeessseseeeeeesssssssessesesssssssssessssssssssseessssssssssssssssss884441558 8888544155888 5 8511588 EE SRR 6
SYSEEM SEAUENCE DIQGIAM ..coouvvrereseesseersesses 6

Y =T0 [T TS D= o = 1 7
SIEE FIMTN eeeeeteeeeeeeseseeeessesseeeesssssessesssessssse s 5858885858 7
COOKIE CULERN .ot eeeveeseeeeeesesseesssssseesesssssesssssssessssssss e85 188 8858585 8
IMI@GE ClASSIFIET .euvrrrseeerersesseesss s 9
Blender MOdel GENEIALION s 10
=T T0] A =T =T = | o OO 10

ER = DIGGIAIMNSovveveeeeesssssssessssssssssssssssssssssssessssesssssssssssssssssssssssessss 5588584415888 8 8881158 11
ClaSS DIGIAIMS .oovvvrsvvvervrssses 11

Introduction

This project aims partially automate Lanus system and to implement a convolutional Neural network to create a
parametrized model of a house. This document will discuss the design of the project including the project plan,
ER diagrams and database design and interactions.

Project Plan

In Figure 1 a Gantt chart can be seen. This represents the timeline of the project. Showing when and how long
each development takes place. A brief description can also be seen in Figure 2.

21/12/2021 09/02/2022

Data pre|

Building Dashb 11/01/2022

Testing Quality of Proces 11/01/2022

Implementation o

18/01/2022

01/03/2022

ting Lanus Blen

Preps

Project Report

Fin;

Figure 1, Gantt chart for project plan

TASK NAME START DATE DUE DATE DAYS DESCRIPTION
Data preprocessing 01/11/2021 11/01/2022 71 Turn raw data from database into usable data for machine learning process
Building Dashboard 11/01/2022 20/03/2022 68 Create Dashboard which can visualize premade data and allows users generate new data
Testing Quality of Processed data 11/01/2022 26/01/2022 15 Test Quality of data to and re-process data if it's unsuitable
Implementation of machine learning algorithim 18/01/2022 01/03/2022 42 Create machine learning algorthim to make accurate prediction of roof shape at minimum
Testing Quality of algorithims 01/03/2022| 12/03/2022 11 Testing accuracy of predictions
Implementing Lanus Blender system 04/03/2022 20/03/2022 16 Link Lanus blender system to the project's data
Preparing Report 20/03/2022 25/04/2022 36 Finalize design, specification and research documents. Create website displaying documents
Project Report 25/04/2022| 26/04/2022 1 Project Report is due
Final Demo 25/04/2022 29/04/2022 4 Final Demo is due

Figure 2, Description

System Architecture

DASH

J? IUser interface displayes hlender models

Blender

Python cleans data into models

Python

Data obtained from Postgres Database

PostGres Database

System built on Mac OS5

MAC OS5

Figure 3, System architecture

Figure 3 describes the communication of the components within the system architecture. The of a back-end
algorithm built with Python which connects to a Postgres database. The system was built to run a dashboard on a
Mac OS. Dash will serve as a front-end user interface. This will provide the user will a simple interface which
allows them to visualize and graph the data as well as generate new data based on an input address.

Python will serve as the ‘glue’ which connects the database with the front-end model creation. Python is used in
the system to process large quantities of data and the automatic building of models in blender. Python was
chosen because it provides acceptable performance alongside rapid development and a large array of extremely
helpful libraries, especially when processing data. It is also largely cited as the easiest and faster language to
implement machine learning models. PostgreSQL will serve as the database manager for the system. This was
chosen due to its PostGIS features which allow for rapid manipulation of the data inside the database as well as
some other very useful geometric functionality that saves development time on the project.

The Mac operating system was chosen mainly because it is the system that Lanus system is built on and is,
therefore, easier to link to their parallel projects.

Database design

The design of the database was built for simplicity and ease of use. This database is acting as a one-way stream of
data outbound. The system only needs to extract data. The main reason a database was used in the system was
to allow for quick extraction of geometry inside the large NPS dataset.

Tables

Only one table was necessary for the system and that was the nps_cropped_lynmouth table. This table stores the
gid, id, and geometry for each site stored in a cropped version of the NPS data. The data was cropped to just the
necessary square kilometer before creating this table to allow for faster extraction of the data. In Figure 4 the
SQL command used to create this table can be seen.

1 —- Table: public.nps_cropped_lynmouth

2

3 —— DROP TABLE public.nps_cropped_lynmouth;

4

5 CREATE TABLE IF NOT EXISTS public.nps_cropped_lynmouth
6 |

7 gid integer NOT NULL DEFAULT nextval('nps_cropped_lynmouth_gid_seq'::regclass),
8 id double precision,

9 geom geometry(MultiPolygon,27700),

10 CONSTRAINT nps_cropped_lynmouth_pkey PRIMARY KEY (gid)
11)

12

13 TABLESPACE pg_default;

14

15 ALTER TABLE public.nps_cropped_lynmouth

16 OWNER to postgres;

17 -- Index: sidx_nps_cropped_lynmouth_geom

18

19 -- DROP INDEX public.sidx_nps_cropped_lynmouth_geom;
20

21 CREATE INDEX sidx_nps_cropped_lynmouth_geom

22 ON public.nps_cropped_lynmouth USING gist

23 (geom)

24 TABLESPACE pg_default;

Figure 4, Creation SQL commands

SQL Statements

Multiple different SQL statements are used to extract geometry from the NPS dataset. The statements allow for the use of
PostGIS functionality. Functions like ST_GeomFromText and ST_AsText are used through the following statements to transfer
the geometry between text and a PostGre geometry object which cannot be read by humans or python.

Firstly ST Contains is used to query the NPS dataset for the site geometry when given the X and the Y of the geolocated
address. This statement can be seen in Figure 5

SELECT ST_ASText{geom) FROM public."nps_cropped lynmouth"
WHERE ST Contains(ST_AsText(geom), ST GeomFromText('POINT(x v)'))
Figure 5, ST_Contains

ST_DWithin was also implemented to find the neighbors of a given site. This returns all geometries within a
certain distance(d) of an X and Y location. The statement used in the project can be seen in Figure 6.

SELECT ST_ASText(geom) FROM public."nps_cropped lynmouth"”
WHERE ST DWithin(ST_AsText(geom), ST GeomFromText(POINT(x v), d'))
Figure 6, ST_Dwithin

ST Transform doesn’t directly link to the NPS dataset instead is a PostGIS function that lets users transform the
SSRID of their gecometry (Geom). The following statements seen in Figures 7 and 8 were used in the project to do
just that.

SELECT ST_ASText(ST_Transform(ST_GeomFromText(geom, 27700), 4326) as wgs_geom)

Figure 7, ST_Transform example

SELECT ST_ASText(ST_Transform(ST_GeomFromText(geom, 4326), 27700D as wgs_geom)

Figure 8, ST_Transform example 2

ST_Area was used in the same fashion to find the internal area of a given geometry. The statement for this can
be seen in Figure 9 below.

SELECT ST_ASText(ST_Area(ST_GeomFromText(geom 4326)) }I

Figure 9, ST_Area

UML Diagrams

System Sequence Diagram

Dash | | SiteFinder CNN | | BlenderScript | | Report

User NPS data PickleStorage VU.CITY data

L o
Inputs Addre:

T
| |
| |
Inputs Address :
|
|

Invalid Address

valid Address

Query for nearby_|
site Geometry

|
|
|
|
|
|
|
|
|
|
——

Retumn
Display Sites Store data
Input site Input site
T g§umelr\; Input site :
geometry Query for
height data

Store Raster Image

[
1
1
| Input Raster image
E{tore Paremetrized house u
|
[
[

Input Parametrized house

Generate scen

________________|

N H =

L
|
|
I

Display Report :

Figure 10, System Sequence Diagram

Sequence Diagrams

Site Finder

Cuery Geocoded Adress

Site not Found

User
|
\ Input address
Invalid address
&
Kl

Return geometry

create site object storing geometry

|

NPS database
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

refurn site object

House

‘ Fickle Storage

create house object

Return house object

Store site and house objects as pickle file

Figure 11, Site Finder Sequence Diagram

Cookie Cutter

Pickle Storage

CookieCutter

Input site geometry

Vu_city dataset
|

Query site Geometry

Site not valid

<

Return vector data

T
|

Input vector'data

Geometry

I
Return RGE ﬂmage

T
ect

SiteFinder

—

I
I
I
I
Store HGB image in site finder ob
I
I
I
I

|
Save Pickle File

Figure 11, Cookie Cutter Sequence Diagram

Image classifier

Pickle Storage

Input RGE imag

Image Classifier CHNN SiteFinder
T T T
I I I
1 1 1
Loop : :
I I
E = 0 I
I
Input RGE image . I
- |
I
I
I
Return classified _[_
Feature
Input geometry of classified feature ~
|
Trim RGE image of feature
T
I
I
! Save Pickle File
I T
I
i

Figure 12, Image Classifier / CNN Sequence Diagram

Blender Model Generation

BlockBuilder ‘ | Block ‘ ‘ BlenderScript ‘ ‘ Blender ‘ | FileStorage
Pickle Storage ; ;
! | |
! 1 1
Loop CreateSiteBlock)
CreateHouseBlockg), |

Input feature

with geometry

CreateFeatureBlock(

Save blocks

Compile Blocks

Input Blocks

Report Generator

Pickle Storage

AX

Blender Models

Figure 13, Blender Sequence Diagram

T
|
|
|
t
|
|
|
|
|
|
|

T
|
|
|
|
|
|
|
|

Input site finder object

|
-

Input blocks

Input PNG of blender mode]

Generate Scene

ReporiBuilder

GenerateReport

Figure 14, Report Sequence Diagram

Qutput files

Display Report

User

10

ER-Diagrams Class

Diagrams
Relationship
database_utils Site
1
1 1
Y FullAutoProcess
house SiteFinder — —
. - siteFinder = SiteFinder()
at -_Geometry() ‘ cookieCutter = CookieCutter()
db = datfpase_utlls() houseFinder = HouseFinder()
houses = list(house()) SatellitelmageFinder = SatellitelmageFinder()
sites = list(site()) cleanData = CleanData()
0.1
1 1 1 1
1
1
1
cleanData
- Geometry 0.1
HouseFinder s gt = Geometry()
gt = Geometry() 0.1 1
1
0.1 >
0.1 SatellitelmageFinder
gt = Geometry()
CookieCutter

gt = Geometry()

1

Figure 15, ER Relationship Diagram

11

Variables and methods of main classes

cleanData

cur_dir
house_dict
site_dict
neigh_site_dict
site_keys
house_keys

load_fron_pickle(pickle_file, pickle_file_folder)
save_to_pickie(pickle_file, pickle_file_folder)
fix_house_address()
create_box_around_polygons()
plot_single_house(sitelD)

plotter()

fix_centres()
find_back_and_front_polygon()
correct_site_orientation()
get_house_orientation()

side_distances()
fix_site_and_house_neighs()
main(pickle_file_pickle_file_folder)

SiteFinder

house_dict
site_dict

neigh_site_dict

pickle_path

exel_path

init(pickle_path,exel_path)

checkSitesForDupes(geom,dict)

checkSitesForDupesGtwo(gtwo,dict)

get_sorted_site_lists()

get_min_distance_from_site_to_other_sites(sitelD)
move_second_house_in_site_to_nearest_empty(sortedSiteKey)
modify_site_and_house_dict(index,h_ind, site_id sorted_site_keys addresses)
fix_homeless_houses(sorted_site_keys)

save_to_pickle(exel_tab)

sort_fixed_houses_and_sites _and_neighs(sorted_site_keys)

main(case, exel_tab)

main_loaded_pickle(exel_tab)

plotter(exel_tab)

CookieCutter

cur_dir
house_dict
site_dict
neigh_site_dict
site_keys
house_keys

load_fron_pickle(pickle_file, pickle_file_folder)
save_to_pickle(pickle_file, pickle_file_folder)
get_height_data(plot_bool house_id,img_folder,pickie_folder)

SatellitelmageFinder HouseFinder

aerial_path tolerance

googleAPI_url cur_dir

load_fron_pickle(pickle_file, pickle_file_folder) house_dict

save_to_pickle(pickle_file, pickle_file_folder) site_dict

load_image(site_id) neigh_site_dict

pixels_to_coords(lon,lat,img,uri) site_keys

coords_to_pixels(x,y,xcp.ycp,img) house_keys

main(pickle_file_name) load_fron_pickle{pickle_file, pickle_file_folder)
save_to_pickle(pickle_file, pickle_file_folder)

main(pickle_file)

combine_pickle_files()
find_raster_image(house_key.center)
save_vector_pickle(i,pts,normals, ptsf normalsf)

run_QGIS_shell_script(site_id)
plotter(xt, yt, x_poly.y_poly.X_main,Y_main,X_extra,
Y_extra_ X_buildings, Y_buildings)

Figure 16, Variables and methods — Main classes Diagram

12

Variables and methods of siteFinder inherited classes

House

address
postcode
house_number
xd

yd

yt

location

site
potential_neighs
pts

vectors

pisf

vectorsf
ground_height
cluster_centre_x
cluster_centre_y
img_link
X_bounds
Y_bounds
X_bounds4
Y_bounds4
assigned

SiteFinder
site = Site()
house = House()
db = Database()
gt = Geometry()

Site

Database

con
cur

house_address
xt

yt

gTwo

%_poly
y_poly
x_ploy4
y_ploy4
geom
geom_27700
num_houses
neigh_sites
area
aspect_ratio
orientation
active
assinged
X_main
Y_mian
X_extra
Y_extra

get_houses_os_walk()
spreadsheet_input(sheet_id, exel_file_folder)
get_houses_from_pickle()
make_houselD(sheet_id,exel_file_folder)
geo_locate_houses(address_list house_dict)

ST_contains(x,y)
single_spatial_to_string(geom)
single_spatial_to_list(g)
list_to_single_spatial(list)
list_to_single_spatial_27700(list)
ST_DWithin(x,y.d)
ST_Transfrom(geom)
ST_Transform_4326(geom)
ST_Area(grom)
ST_Convex(grom)
ST_Concave(geom, target_percentage)
ST_ShortestLine(geom,geom2)
linestring_to_length(g1,92)
close_con()

take_from_database(x.y,PostGIS_ins)
find_neighs_overiap(geom,cur)

find_nearby_polygons(x,y,PostGIS_fns, distance)

process_geometry(geometry,gt)

Figure 17, Variables, and methods — SiteFinder classes Diagram

13

Variables and methods of Geometry Class

Geometry

inProj
outProj

convert_lat_long_to_27700(lat,lon)
convert_27700_to_lat_lon(x1,v1)
convert_list_lat_long_to_27700{at lon)
convert_list_27700_to_lat_lon{x1,y1)
centre_poly(x,v)
poly_angles(x,y)
flip_array(x.y)
sort_array_acwixy)
find_area(x,y)
get_aspect_ratio_areaxy)
point_in_polygon{psx, py.x.v)
rotate_polygon(x,y,alpha)
enlarge_ploygon(x y.scale)
polygon_in_enlarged_polygon(qx, qy,x.y,scale_factor)
antipodal_pairs{x0,y0)
parallel_vector(a,b,c)
line_intersection(x1,y1,x2 y2 %3 y3,x4 y4)
compute_paralielogramix.y,1,z1,z2,n)
distance(p1,p2,p)
min_pt_pt_dist(1,y1x2.v2.min_d)
min_containing_paralleogram{x,y)
shift_listiseq,n)
shift_polygon{x,y,dx dy)
linear_regression_to_angle(xy)
get_pts_normals_elevations{y,x1,y1)
find_centre(x,y)
split_pts_vecrtical_and_rest(pts,elevations, trim, normals)
plot_normals_and_colour_map(pts,

normals, ptsf,normalsf, house_id,img_folder)
basic_model_from_height_data(x, yx1,y1,plot_bool,

hosue_id,alpha,img_folder)

Figure 17, Variables, and methods — Geometry classes Diagram

14

