
Ada Runtime Error Generator
Derry Brennan C00231080, Institute of Technology Carlow, April 2021

Abstract
“Ada is a state-of-the-art programming language that development teams worldwide are
using for critical software: from microkernels and small-footprint, real-time embedded
systems to large-scale enterprise applications, and everything in between.” [1] It is
particularly used by the military, avionics and many other fields where safety is of critical
importance.

With the reliance of safety in Ada it is pertinent to investigate the ability to have run-time
error free programs. An error that happens in the field could cause the loss of life or the
destruction of property. My goal is to produce a prototype proof-of-concept tool which will
be able to take Ada code and be able to tell the programmer if there is any possibility of
runtime errors in their code and where, with the test inputs provided that would cause
these errors to occur. This poster will be focused on the research into the different areas
required for this project such as Ada itself, parsers and the different types of runtime
errors.

Objectives
The goal of the project has been to investigate the possibility of using a test input
generation software Mika [2] to also perform checks for possible runtime errors in
the supplied Ada code. Runtime errors in critical systems such as avionics and
rocketry, as well as any other system where human lives or other extremely
valuable assets are depending on the smooth operation of the system. These
systems need to be tested and for all outcomes and errors and if there was a tool
that could do these things it would be of great benefit to developers.
Some Examples of runtime errors include:
•Division by 0
•Array out of bounds indexing
•Integer overflow

Methods used
Mika has both a lexical (Flex [3]) and a syntax analysis (Bison [4]) file for Ada that it uses to parse the source code. To achieve the checks for possible exceptions within
the supplied source code addition were made to the parsing file of Mika, ada.y. Firstly an addition for the division by 0 was made, followed by another check for array
index out of bounds. The division by 0 looked at the inserted a check after any division symbols found within the source code and determined if there was any possible
conditions within the program that would make this value equate to be 0. Another addition in the parsing file was for when any element was being indexed, in Ada syntax
“Array(I)”.

Results
The results of the research project were positive with the division by zero and the
array indexing out of bounds additions generating test inputs. Although the parser
does not have the type information needed to push further into more complex
exceptions. Further research into performing these checks within the symbolic
executor are the next phase.

Conclusion
The search for runtime errors in code is a very difficult task and not many tools have this functionality, even though
the cost of verification and validation of software is very high [5]. Tools that could automate some of this process
and give better confidence in the produced product would be very beneficial.
A great deal of learning took place involving the use of symbolic execution and the parsing of source code also.
Along with a greater understanding of the Ada language.
Although the addition of the checks for runtime errors within the parser was too ambiguous to be a sustainable
way of proceeding, an idea to move the checks into the symbolic executor where the type information of the
elements from the source code is available seems promising for future research.

References
[1] Adacore.com. 2020. About Ada - Adacore. [online] Available at:
https://www.adacore.com/about-ada [Accessed 14 November 2020].
[2] Meudec, C., 2021. echancrure/Mika. [online] GitHub. Available at:
https://github.com/echancrure/Mika [Accessed 29 March 2021].
[3] Lesk, M, and Schmidt, E., Lex - A Lexical Analyzer Generator, Available at:
http://dinosaur.compilertools.net/lex/index.html [Online], Accessed on: 27/10/2020
[4] Johnson, S., Yacc: Yet Another Compiler-Compiler, Available at:
http://dinosaur.compilertools.net/yacc/index.html [Online], Accessed on: 27/10/2020
[5] Rommel, C., 2018. Controlling Costs with Software Language Choice. [online] Adacore.com.
Available at:
https://www.adacore.com/uploads/techPapers/Controlling-Costs-with-Software-Language-Cho
ice-AdaCore-VDC-WP.PDF [Accessed 29 March 2021].

Acknowledgements & Contact
For further information on this project, please feel free to contact
at C00231080@itcarlow.ie or derrybrennan@gmail.com
Also, a big thank you to all those that helped throughout this
project and provided great ideas. And of course, my supervisor Dr.
Chris Meudec, who is also the author of the Mika software.

Dynamic Code Querying
A Visual Studio Code extension was created to allow a developer to generate tests inputs that
satisfy any Boolean condition they wish anywhere in the code.
The developer can use Visual Studio Code (VS Code) command menu to insert a special Mika
comment or to run Mika on the code open in VS Code which will supply back the answer in a tab
next to the source code. This can be very useful to fully understand how code flows and is
something that at present is not readily available within a text editor like VS Code elsewhere.

https://www.adacore.com/about-ada
https://www.adacore.com/about-ada
https://github.com/echancrure/Mika
https://github.com/echancrure/Mika
http://dinosaur.compilertools.net/lex/index.html
http://dinosaur.compilertools.net/lex/index.html
http://dinosaur.compilertools.net/yacc/index.html
http://dinosaur.compilertools.net/yacc/index.html
https://www.adacore.com/uploads/techPapers/Controlling-Costs-with-Software-Language-Choice-AdaCore-VDC-WP.PDF
https://www.adacore.com/uploads/techPapers/Controlling-Costs-with-Software-Language-Choice-AdaCore-VDC-WP.PDF
https://www.adacore.com/uploads/techPapers/Controlling-Costs-with-Software-Language-Choice-AdaCore-VDC-WP.PDF
mailto:c00231080@itcarlow.ie
mailto:derrybrennan@gmail.com

