Secure Communication Platform

Research Manual
13" November 2020

Bachelor Of Science (Honours)
Software Development

Liliana O’Sullivan Instititid Teicneolaiochta Cheatharlach
C00227188 INSTITUTE of

TECHNOLOGY
Paul Barry CARLOW

Project Supervisor At the Heart of South Leinster

Table of Contents

1.INErOAUCEION.eeeeeeeeeeeeeeeeeeeeieeeeieseeeeeeeereieesernaesesensssesssassessnsssssssssssssnssssssnnsssnsnnssssenan 5
2. Privacy aNd SECUKILY.......cccceveuuueiiiiieneuniissiiissmnsiiisssmmssmssssssmmsssssssssssssssssssssssssssssssssssssssnns 7
3. MArKet ANQIYSIS....ccueuueeeirieeeenunieiinniennuisisrissssnssssssismssmsssssssmsssssssssssssssssssssssssssssssssssssssnns 8
4. Communication Platform ArcRit@Cturescccoeueeeeeeeirriivvensssissinsessssssssssessmsssssssenns 10
L 0 00T 1 10 =T P 10

L B 3 = =T o 1 = o 11

L =TT o T - T S 12

B, COSE STUAIES.....ccuueeeeeeeeeeeeeeeeeeereeieeereiniesteeatiestesssssnassessnsssssensssessesssssenassensenssnsenasssneen 13
L I 0 1T ol o T o N 13
LT S =T 1 =T 4T | = TN 15
LT 2 4 T T TN 17

6. Relevant TeCHNOIOGIEScccuuuureiririeeeuniiiiininreenisissiissssssssssssssssssssssmmssssssssssssssssssssses 18
6.1 NetWoOrk ProtoCoISccccuuiiiiiiiiiiiinmmniiiiiiiiiiiimiminiiiieimmmseiiieessmmsestiieesssmssssssssesns 18

B 1.1 HTTP(S) cervreeeveeeeeeeeeeeeeeeeseeeeeeeeeeeeeeesaeeeeeeeeeeeeeeeeeeeeeeeesee s eeeseeeeeeeeeeeeseeeaeees s s eseteeseeseseeseeeseeeesasesseeeaeeneen 18

B.1.2 WEBDRTC ...ttt ettt ettt e e e ettt e e et e e e e etbeeeeeabaeeeeaasaeeeeabsaaeeaatseseessseeeansaseaeastaeeeanssaeeeanseeas 19

B.1.3 W ED-SOCKETS ... veiiuteeeiiectee ettt stte ettt ste sttt e s te e st e st e e s be e e bee e beeabaeessteesseeessbeesaseesnseeanteeesaeensaeansaeanes 20

LT 0 T -] < T 1Y TN 21
6.2.1 SQL....cuuuueeunnnnnnennnnnnnnnsnnssnnnsmnsstssstestseeeteseesseeeeeeeeteseeteeesaasasaaann 24
6.2.2 NOSQL ...ceuuueennnennnnnnnnnnnnnnmmnsnnnsmmsssmsssssssssssssssssssssssssssssssssssstssssesssseesssesssessssesssessesessssssasasnan 25

A Y=ol 7 1 5/ 30
8. Supplemental Updates...............eevrvveennniiiiinneneniisisiinsesisssnisssssssssssssssssssssssssssssssssssssns 32
LAV + T o Yo (=T 3 32
V1 T o PP 32
L= 2 o PRSPPI 32
1L =Y SRR USRR 34

AN o I TRV =1 (o ¢ 41T oL P 34
DOCUMENTATION .ttt e et e e e e e e e st be e et e e e e e saaas b et eeeee e e s anbebeeeeeeesaannnraeeeeaesannan 34

Yo I o o LTSRS 34
EDIXIT coviiiieeenniieeiiiiiiennneisieeiiiieesssssssseeniieesssssssssesstierssssssssssessseesssssssssssssssesssssssssssssssssssnssssssssasss 35

L0 aY o1 o = =T 0] o TN 35
Y [(ol @ Ve o= =T o] o 1Y OSSPSR 35
ASYMMETIIC CrYPTOZIAPNY e itiiiiii ettt sttt erte st e e ree et st e et e e s be e s beeebee s baeesseeebaeessseesateessseesnseesnsenan 36

[| I o] o 1o - | S PO U P PP PP PPPPPOIN 37

L0 133-1 1 Lo [- T 37
L T T o 1= gl 2 (=X =Ts | ol ¢ TS 39
10. BibliOGrapPRYcovvvveeeeeiiiiiiveniiiisiniesnisissinisssssiss 39

List of Figures

Figure 1 Adaption of Internet users after Snowden revelations.............ccccceeiiiiinnee. 5
Figure 2 Social Impact of COVID-19 Survey CSOccceeviiiiiiiiiieceeeeeeeee e 6
Figure 3 Data ProteCHiONueeeeeee e 7
Figure 4 Google Trends VPN ...ttt e e 8
Figure 5 Google Trends, SigNal........cccccccuiiiiiiiiiiiiieeeeeee e eeees 9
Figure 6 Google Trends ProtonMalil..............eueiiiiiiiiiiiiiiiiiieieeeeeeeeeeeee e 9
Figure 7 Google Trends ProtONVPN............uuiiiiiiiiiiiiiiieieie e 9
Figure 8 Google Trends DUCKDUCKGOuuuuriiiiiiiiiiiiiiiieeiieieeeseeeeeessseeeeeeee e 9
Figure 9 Centralised ArChiteCUrecccuuiiiiiiiiiiiiiieeeee e 10
Figure 10 Federated ArChit€CIUIeooooiiiiiiiiii e 11
Figure 11 Peer-To-Peer ArchiteCture ..o 12
Figure 12 Element Client........coo oo 15
Figure 13 Sharing Data With Briarcccccuuiiiiiiiiiiiiiieeeee e 17
Figure 14 Browser SocketlO Connect Code.......uuiiiiiiiiiiiiiiiiiiiiieiecceeeeeeeeeeeee 20
Figure 15 Form Submit COE.......cccciiiieeeeeeeeeeeeeee e 20
Figure 16 HTIML FOIM ..ot 20
o U Y IS T=T V= gl o Yo oSO 20
Figure 18 Response HaNAIEr........ oo 20
Figure 19 Browser DiSPIAYcoiiieeiie et 20
Figure 20 Horizontal vs Vertical SCaling.........uuueeiiiiiiiiiiiiiiiicccceeeeeceeeeeeeeeeee 22
Figure 21 SQL EXAMPIE ..cooeeeeeeeeetttte ettt e e 24
Figure 22 JSON 10 BSON ...t e e e e e s eee e e ee s 26
Figure 23 Document EXample...... oo 26
Figure 24 login_db.users COIECTIONcoooiiiiiiiiii e 27
Figure 25 HTIML LOGIN FOMMeeieeeee e 27
Figure 26 FIask SEIVEToooo ittt eees 27
Figure 27 Login Server-LOgIN......ccoc i eeeeee e e e e e e e e e e e e e e s s s snsssnseeeeeeeeees 27
Figure 28 SQL VS KEY-VaAlUE ...ttt 28
Figure 29 Graph NOSQIL........uuiiiiiiiiiiiieee et e e e e e e e ssnne e e e e e e ennnes 28
Figure 30 ColUuMN STOIEcco e eees 29
Figure 31 ENd-To-End ENCryption ... 31
Figure 32 Locust MiCro-benchmark...........ccoeiiiiuiueiiiiiieeee e 33
Figure 33 Symmetric Cryptography Diagramcceeeeeeiiiiiiiiiiiiceeccceeeeeeeeeeee 36
Figure 34 Asymmetric Cryptography Diagram.........cceeeeeeiiiiiiiiiiicecccccceeeeeeeeeeeee 37
Figure 35 PEM EXaMPIE...oeeeeeieeeeee e 37

List of Tables

Table 1 FIASK RESUILScoeeeeeeeeeeee e e e e e e e e e e e e 33
Table 2 FASTAPI RESUIL......cou et e e e en e e e e 33
Table 3 FAStAPI 14,000 USEIS......co ittt e e e e e e e e e e e eene e e ennanns 34
Table 4 FAStAPI 7,000 USEIS....c.uoeiiiieeeeeee et e et e et e e ee e e e ese e e e eaa e e eena e eennanns 34
TabIE 5 USEI TADIE ...t et e e e e e e e e a e e e en e e ennanns 38
Table 7 Cassandra REad...........uuueiiiiiiiiiiie ettt e e e e e eaae e e e e eesaaaeeaeeees 38
Table 6 SQL REAUccovuieiieeieeee ettt e e e e e ee e e e e e eeaaa e e e e e sessaneseeresnanneeeerens 38

1.Introduction

On the 6™ of June, 2013, an article was published by ‘The Guardian’ (Glenn
Greenwald, 2013) that, unbeknownst to the public, was the beginning of a series of
disclosures that changed how the world views surveillance. Soon came another two
articles about the PRISM program (Ewen MacAskill and Glenn Greenwald, 2013),
which forced American telecom providers to disclose data on their customers. The
world was now aware, and there are no possibilities of covering our eyes anymore.

Was the government the villain in this? Was Edward Snowden irresponsible? The
answer is an individual one, though the thirst and desire for security echoed
throughout the public. As seen in Figure 1!, some users internet online behaviour
changes as a result. A year after these disclosures, Apple announced its newest
flagship mobile operating system would natively encrypt the data stored within its
user's mobile devices (David E.Sanger and Brian X.Chen, 2014).

How Internet Users Adapted After Snowden Revelations

% of Internet users who changed their online behavior in the following ways compared to last year*
Avoiding certain o
websites and apps _ 43%
] |
regularly 39%
*onime post: NN -
online posts 28%
communcate e NN =
communicate with 0

Closing social _ 1% 60% of Internet users have
media accounts . heard of Edward Snowden
Using the internet _ 10% 39% of those who heard of
less often 2 him, changed their online

behavior following his

* based on a survey among 23,376 internet users in 24 countries

@ ® @ carried out in Oct. and Nov. 2014
@statistaCharts Source: Centre for International Governance Innovation

Figure 1 Adaption of Internet users after Snowden revelations
The need for private communication was clear. Many communications platform
have stepped up, such as Signal or Jami. Private chat is not currently standard on
all platforms, many of which enable a party outside the conversation of the two
individuals to access chat logs.

! (Felix Richter, 2014)
5

Regarded by many as the notable feature of the year 2020, COVID-19 caused many
disruptions, from economical to the simplistic parts of daily life, such as visiting the
relative. A breakdown of its impact can be seen in Figure 2°.

An Central -
/ Phriomh-Oifig Statistics Social Impact of COVID-19 Survey
‘ Staidrimh Office A Ill 2 O 2 O
o P
@
‘ % of respondents whose Consumption has increased or decreased since
12 2 introduction of restrictions*
[+)
= /0 Alcohol Tobacco Frequency Junk Food Time spent Time spent
rated their Overall Life =~ Consumption Consumption of Exercise and Sweets watching TV on the Internet

Satisfaction as ‘High'
compared to:

44.3.% in 2018

31.4% in 2013

‘:“‘: -

42_4% % of respondents Concerned about

rated their Satisfaction household stress from confinement

with Personal
Relationships ‘High’' - _ ~
compared to 4 reported Feeling lonely have been Negatively

60.0.% in 2018 Not at all Somewhat Very ‘All/most/some of the time’ financially impacted
60.2% in 2013 23.2% 59.6% 17.3% compared to 16.9% in 2018 by COVID-19

2.8%
*of those that already partake in the behaviour D

Figure 2 Social Impact of COVID-19 Survey CSO

Due to COVID-19, events of all kind got cancelled entirely or transitioned to an
online model. Two notable events were two cybersecurity conferences, Blackhat
and Def Con. Def Con announced its social aspects would occur within a Discord
Server (Def Con Official, n.d.). For Blackhat 2020, the admins and presenters used
Discord too for communication (Bazzell, 2020). The use of Discord sparked much
disappointment from presenters and attendants alike (Alfred Ng, 2020). The
motivation for this project was raised from this. A platform that multiple people can
communicate without degrading user privacy or security.

? (Publication, 2020)

6

2. Privacy and Security

Privacy and security often are not considered very engaging unless depicted in a
Hollywood production where systems are hacked into in a moment of brilliance and
sophistication.

While the realities of Privacy and Security are much less glamourous, it is hard to
deny the need for it in the modern age of technology. According to the United
Kingdom’s Office for National Statistics, the number of offences for ‘computer
viruses/malware’ received an increase by 61% from 2019-2020, ‘Hacking- Social
media and email’ had an increase of 55% and ‘Action Fraud’ saw an increase of
23% (Nick Stripe, 2020). The need for privacy and security speaks for itself.

Privacy and security are two interrelated terms, frequently used in conjunction and
often interchangeably. Privacy is about the handling of personal information in its
processing, storage or usage. It is about the misuse of an individual’s information.
Common ways to ensure user privacy includes applying government regulation (Eg:
General Data Protection Regulation) and the application/management of the privacy
policy within an organisation (DataPrivacyManager, 2020). Security is about
protecting data from unauthorised third parties access. Security involves ensuring
the integrity of data, such as accuracy, reliability and controlling availability to
authorised parties. Methods used to increase security include using secure
encryption, applying network security, providing multi-factor authentication options,
breach response and access control. A visual representation can be seen in Figure
3°.

Data Protection

Protected

. Network Access Discovery & DSARS .
Al
"y Data
Monitoring Response
How those policies got enforced What data is important and why

Figure 3 Data Protection

% (DataPrivacyManager, 2020)
7

3. Market Analysis

With an ever-increasing amount of people working remotely due to COVID-19, the
requirements for security has increased globally. No more apparent than in the rise
of Zoom (Eric S. Yuan, 2020). At the end of December 2019, Zoom had
approximately 10 Million daily meeting participants. As of March 2020, this has
increased to over 200 Million daily users. This rise in popularity was not without its
complications. Multiple security vulnerabilities were discovered in Zoom, degrading
user trust. Zoom responded with the acquisition of Keybase (Eric S. Yuan, 2020)
and a ninety-day security plan, showcasing their plans to repair its vulnerabilities
and improve security across the platform.

While Zoom might be considered an exception, if we look at the internet searches
people are making worldwide for the past five years, we can see a common trend.
In Figure 4* can be seen a worldwide search trend of "VPN’ for the past five years.

Interest over time

Note

Figure 4 Google Trends VPN

There is a slow upward trend of individuals searching for VPN’s. If we look at
organisations that produce products with privacy and security at the forefront of
their design, we can see an increasingly upward trend.

4 (VPN, 2020)
8

Figure 6 Google Trends ProtonMail Figure 5 Google Trends, Signal

Interest over time Interest over time

Note

Figure 8 Google Trends DuckDuckGo Figure 7 Google Trends ProtonVPN

In Figures 5°,6°,77,8% an uptrend in privacy and security-centric software can be
seen, with a positive uptrend in individuals looking for such software, a market
position where software can be designed to nurture their user's data, rather than the
exploitation of it must exist.

® (ProtonMail, 2020)

¢ (Signal, 2020)

" (DuckDuckGo, 2020)
8 (ProtonVPN, 2020)

9

4. Communication Platform Architectures

Platforms that enable conversations can be architecturally constructed differently.
The most common are in one of three forms

e (Centralised
e Federated
e Peer-To-Peer

Each platform has its advantages and disadvantages. Developers may choose one
architecture over another, depending on their requirements. In general, most
platforms in mainstream use are centralised.

4.1 Centralised

Centralised architecture is the most
common, primarily due to the
advantage of retaining control over
many aspects of the system. New

features can be implemented with
relative ease, finding contacts is g— F_g
simplified, and it can provide lower S

latency with consistent and predictable
performance.

This approach features one or more

clients connecting to one or many D
central servers, as seen in Figure 9. In
general, each client is limited in its
logical capabilities and serves to send requests to the server. Servers wait for
requests to be received from clients and replies with a response in return. These
servers are generally deployed with large computing capacities using high-end
enterprise hardware equipped with high-speed internet connectivity, often in data
centres. Centralisation has its disadvantages; from a security point-of-view, the
users place absolute trust in the server administrators. The platform users have no
insights into the software running on the server or any malicious acts being
committed. Internet Protocol (IP) addresses of the platform users are also exposed
to the central server, though not often exposed to individuals the user chooses to
engage with. In creating this architecture, setting up and maintaining these servers
can be an expensive endeavour; not only in the hardware, there is also the need to
maintain the environmental conditions the servers operate within, ensuring they
receive adequate heat-management solutions.

Figure 9 Centralised Architecture

10

4.2 Federated

In this approach, multiple independent servers exist, with a client that can
communicate to each server using a shared protocol. Email is an example of a
federated service; many emailing services exist, such as Gmail or Microsoft Office
365, that are all capable of talking to each other using protocols such as Simple
Mail Transfer Protocol or Internet

Message Access Protocol. '
A client will connect to one or more l;

independently organised hosted

servers, as shown in Figure 10. These —
servers are considered a separate self-

contained ecosystem. The client ‘

software is not much more I; \j
sophisticated than a centralised client,
with a similar approach of request from

a client and respond from the central =
server being used.

Figure 10 Federated Architecture

Often in this semi-distributed fashion, multiple third party clients can provide more
native and customised experiences to their users. If we follow the federated email
example, we will soon find that multiple email clients exist, such as Thunderbird,
Microsoft Outlook, K-9 Mail, eM Client and many more. As the protocols used are
often open-source to enable inter-polarity, the path to the development of clients is
more accessible.

The prominent advantage of this approach enables the distribution of trust. This
comes from hosting a personal server or through the usage of different public
servers. This may also lead to complications as servers might be hosted by a
hobbyist or an individual who is not informed of cybersecurity. The host of these
servers has complete visibility of the IP addresses of its users, though they are not
generally exposed to the other users of the platform.

Due to the distributed nature of this architecture, the ability to integrate new
features becomes a near-impossible task, as the need to standardise and test it
across the network becomes essential. Any new features generally are implemented
on the client side.

11

)

4.3 Peer-To-Peer

Peer-To-Peer is designed with every client
(known as a peer) connecting directly with
one another without a third-party server,
showcased in Figure 11. Peers find each
other through the use of distributed
networking technologies. Distributed Hash
Table (DHT) is one example of this. DHT, for
example, is an essential technology for the
discovery of peers in Torrents.

In the messaging space, peer-to-peer

messaging can also be created using

proximity-based networks such as Wi-Fi or

Bluetooth. An implementation example of

this is ‘Scuttlebutt’ or ‘Briar’. This approach Figure 11 Peer-To-Peer Architecture
of Peer-To-Peer messaging is generally low

bandwidth, can only facilitate text-based messages. Proximity-based network
messaging is generally used when internet connectivity is problematic such as a
time of natural disaster.

The appeal of using peer-to-peer comes from its trustless design. In peer-to-peer
connections, the user does not place trust in a third-party central server. The trade-
offs come in the form of user experience generally. For example, messages are not
sent unless both peers are online, or the stability of the connection is not on-par
with a centralised high-spec server. The users IP address is also directly exposed to
all other peers they connect to. As with all of the above architectures, IP address
masking can be mitigated by using a Virtual Private Network or Proxy; however,
these are not ideal solutions.

12

5. Case Studies

The following three case studies showcase the three different architectures
discussed in the previous section as current production platforms.

5.1 Discord

Platform type - Centralised

Discord is a platform that combines the voice and video aspects from platforms like
Skype with the text aspects of Internet Relay Chat (IRC) in a centralised design.
Discord originally was developed for the online video-gamers target market;
however, it has recently changed course towards a general-purpose group chatting
platform (Librarian, 2020).

Discord came as inspiration when the founder noted how difficult it became to
develop a strategy with their teammates in strategy games. They specifically found
that services forced users to type in IP addresses just to chat or tended to be
resource-heavy with security vulnerabilities built on outdated technologies. This led
to developing a chat service with a simplified user experience and built on modern
technologies (Tasos Lazarides, 2015).

All text-based messaging is enhanced with uploading files and sending GIFs all in-
lined within the text window. The chat also has full support for the Unicode standard
and supports the markdown standard enhanced for text formatting.

Users can send text-based messages to each other directly in private chat and
create audio and video calls. Users are also able to share their computer’s screen
with audio when in a call.

For group chats, users can create ‘servers’ with multiple channels. These channels
are similar to IRC text channels, with the ability to create audio call only channels.
Within a server, roles can be created to aid in server administration. Roles can be
used to enable sending text messages in restricted channels, aid in moderation and
more. All roles are entirely customisable to the administrators of the Discord server.

Discord has developed a feature-rich Application Programming Interface (API) that
enables developers to plug into the Discord ecosystem. This can be through using
Discord to log into services (Eg ‘Signup with Discord’), creating bots to create
interactivity in text-based chat.

13

As per the inspiration, Discord utilised multiple modern technologies. Its web
application is created in ReactJS. By developing it in ReactJS, they were able to
port ReactJS to React Native to gain operability for iOS. Android was created
natively due to React Native’s performance difficulties (Fanghao (Robin) Chen,
2016). Utilising Electron, they were able to develop native Windows, Linux and Mac
applications.

When Discord was created in 2015, it initially used MongoDB to store its user's
messages. In under a year, once the 100 million stored messages were reached,
performance became unpredictable. This is due to MongoDB storing all data and its
indexes in memory. Once the data size outgrows the memory available, data begins
to be moved in and out of memory in a Least Recently Used (LRU) ruleset. This
unpredictability in performance, among other issues such as scalability, became the
lead to the search for a possible replacement (Stanislav Vishnevskiy, 2017). The
engineers at Discord choose to use Apache Cassandra for such a task due to its
fault-tolerant design, swift writes, and its overwhelming has aided in maturing it into
a stable platform.

At the heart of Discord servers is Elixir. The choice for Discord was clear; it desired
to be a highly concurrent real-time system, this paved a clear path to the Erlang VM.
Erlang is designed for highly concurrent distributed environments primarily aided by
its fundamentally functional design aided with immutable data enforcement. To gain
more performance from Elixir, the engineers at Discord created their own data
structure developed in Rust and bridged it to the Erlang VM using ‘Rustler’ to
develop further a more performant system (Matt Nowack, 2019).

To develop calling and text chat, Discord utilises WebRTC and WebSockets (Jozsef
Vass, 2018). While on a browser, it is reliant on the implementation offered by the
browser. In the Desktop (Electron), iOS and Android applications, a custom C++
application was built on top of the existing native WebRTC tailed to Discords needs.
Having this customised version of WebRTC has enabled multiple features that
would pose a significant challenge to implement otherwise. An example of this is
avoiding sending audio data during periods of silence, which results in reduced
bandwidth and Central Processing Unit (CPU) usage.

In Discords design, users do not directly connect in the standard peer-to-peer
design of WebRTC. Instead, users connect to centralised servers operated by
Discord. This provides more reliable connections and keeps the IP addresses
hidden from the other parties involved in a call.

14

5.2 Element - Matrix

Platform Type - Federated

Element is a client that implements the Matrix protocol. Matrix is an open-source
protocol for secure decentralised communication. It left beta on the 11" of June
2019. On the 19" of December 2019, Mozilla announced Matrix with Element would
become its successor to IRC due to its “...excellent team collaboration and
communication tools,..” (mhoye, 2019). The French government also recently
completed its transition to using the Matrix and Element due to fears of foreign
surveillance and released the app as an open-source application to the iOS and the
Google Play Store (Matthew Hodgson, 2018). Matrix is an application-layer protocol
for federated real-time communication, much like the current email protocols. It
exposes Hypertext Transfer Protocol (HTTP) APIs and uses the JavaScript Object
Notation (JSON) for data exchange. It uses SQL for local storage of information.

Element is a separate entity from the developers of the Matrix protocol. It is a for-
profit company that design their services around hosting servers using the Matrix
protocol. Element has a web client, mobile applications on iOS, Google Play Store
and F-Droid. It provides desktop clients for macOS, Windows and Linux
(element.io, 2020). The desktop application can be seen in Figure 12°.

Element’s Android application was created in Kotlin. Kotlin is a general-purpose

2, Victor Q Operation Rebrand

Finance (encrypted)

programming Figure 12 Element Client Ianguage

® (element.io, 2020).
15

designed to be interoperated with Java by compiling Kotlin to java bytecode.
JetBrains developed it, known for creating integrated development environments
such as IntelliJ and PyCharm in 2011. On the 7" of May 2019, Google announced
that Kotlin would become the preferred language for the development of Android
apps (Frederic Lardinois, 2019).

The macOS, Windows and Linux desktop applications are achieved through the use
of the Electron wrapper. Electron is maintained by GitHub and enables developers
to build cross-platform applications with the combination of the Chromium
rendering engine with a runtime of Node.js. Some well-known applications created
using Electron include Visual Studio Code, Atom, Slack, Facebook Messenger and
more (Electronjs, 2020). Elements iOS application is created in native Objective-C.

16

5.3 Briar

Platform Type — Peer-To-Peer
Briar is an open-source instant messaging platform implementing a Peer-To-Peer
architecture. It is designed to be used by activists, journalists and anyone else who
requires security in their messages. All message content is synced directly between
devices. It does so by one of three means:

e Bluetooth

e Wi-Fi

e The Onion Router (TOR)
Its use of Bluetooth/Wi-Fi for connectivity removes reliance on existing centralised
infrastructure, as displayed in Figure 13'. By directly connecting users, it aids in
preventing surveillance and censorship by distributing data across multiple sources.

SHARING DATA WITH BRIAR VIA WI-FI, BLUETOOTH & INTERNET

WI-Fl & BLUETOOTH RANGE

a
A posts a message to o
B the biog their blog on Briar. Cand Faren't Bnar.
S contacts, so C doesn't
post to B via Wi-Fi sync the post to F.

ot!
¢ travels O 2

(o] [] C syncs the blog post
B syncs the blog post to E via Bluetooth.
to C via Bluetooth. F
C hasn't shared this blog E
with D, so they don't
D sync the post to D.

E has Internet access and can sync
the post via Tor to contacts outside
WI-FI & BLUETOOTH RANGE

of Wi-Fi and Bluetooth range.

Figure 13 Sharing Data with Briar
If the user has access to an internet connection, they can connect to their peers
with the security of the TOR network. TOR is an open-source volunteer-run network
to bypass censorship, mass surveillance and ensure the anonymity of its users.

Briar is natively designed around the Android platform, leading it to be developed in
Java. It uses an in-memory SQL database named “H2 Database Engine” (GitLab,
n.d.). The use of a local database ensures that all data is stored on the user's device
locally is essential to distributed philosophy.

1% (Briar, n.d.)
17

6. Relevant Technologies

This section discusses technologies that are relevant to the development of this
project.

6.1 Network Protocols

Network protocols are a set of rules governing how information is transmitted to
ensure that multiple devices can communicate and have an ‘understanding’ of each
other. Protocols define the syntax, semantics and synchronisation of the
communication. While protocols used in networking can be broken into multiple
layers, as shown by the Open Systems Interconnection (OSI) model, the protocols
relevant to this project primarily reside in the upper host layers. The protocols
discussed will mostly be in those layers.

6.1.1 HTTP(S)

Hypertext Transfer Protocol (HTTP) is one of the foundational protocols used on the
internet to facilitate data exchange between devices. It is a set of standards
maintained by the Internet Engineering Task Force (IETF), a non-profit which
develops the internet protocols widely in use. When accessing a web page, the
‘http://’ commonly a prefix to a webpage specifies to the web browser to use the
HTTP protocol for data exchange. Modern browsers, such as Google Chrome or
Mozilla Firefox, generally do not require the ‘http://’ prefix as it is the standard
method for communications across the internet.

Hypertext Transfer Protocol Secure (HTTPS) is an extension of HTTP, implementing
security through encryption using Transport Layer Security (TLS). A user connects
using HTTP to a web server by using the ‘https://’ prefix in the Unified Resource
Location (URL). The concept of HTTPS has initially been in production by Netscape
Communications, the developers of Netscape Navigator, in 1995 by implementing
Secure Socket Layer (SSL). SSL is the predecessor to the modern TLS commonly
used today. (Cloudflare, n.d.) As SSL evolved into TLS, it became standardised into
HTTPS by the IETF in May 2020 (E. Rescolra, 2000).

The addition of TLS aims to provide privacy and data integrity. Once a HTTPS
connection has been established, any parties attempting to eavesdrop on the traffic
in transit generally will be unable to see the unencrypted data. In a practical
perspective, if a user connects to Google.ie and places a search, no party outside
of Google, and the user would be able to see the contents of the search that
occurred. It is the standard protocol used to authenticate credentials for the
processing of sensitive or private information. According to Firefox Telemetry, the

18

information statistics on Firefox users, at the time of writing, ~84% of sites loaded
by Firefox defaulted to using HTTPS by default (letsencrypt.com, 2020).

6.1.2 WebRTC

Web Real-time Communication (WebRTC) is an open-source project that aims to
provide web browsers with APIs to enable audio and video communication to occur
within a webpage by connecting directly on a peer-to-peer basis without the
additional installation of plugins or downloaded applications. WebRTC composes of
multiple components that enable it to function (Mozilla, 2019).

ICE

Interactive Connectivity Establishment (ICE) is a method of connecting the two
parties attempting to communicate together. It conducts connectivity checks to
gain awareness of the environment present. Once it has completed collection, it
begins initiating connections aiming to connect to the other party. It does so by
sending information until a direct connection is established. This can take multiple
seconds to establish a connection. As a result of this overhead, Trickle ICE was
developed, which essentially conducts the connectivity checks in parallel to
decrease the time taken of this entire process (WebRTCGlossary, 2017). It will first
attempt to connect directly, such as in the case of being on a local network. In most
scenarios, the parties are on a different network requiring the use of a STUN server
or possibly a TURN server.

STUN

Session Traversal Utilities for NAT (STUN) is a tool used by ICE. It is a lightweight
protocol used to establish the current public IP address and port humber. It is
achieved through the use of an existing third-party server known as a STUN server.
The client will send a request to the STUN server. Once the server receives the
request, it responds with the IP address and port number as observed by it. STUN
is useful when a client is behind a router or additional software that may restrict
connectivity.

TURN

Traversal Using Relays around NAT (TURN) is used in a scenario where STUN is not
possible. A TURN server relays information through it to the other party. A TURN
server may not always be used. It is generally used as a failsafe mechanism by the
ICE protocol. Operating a TURN server is considered expensive due to the
bandwidth usage associated with relaying information.

19

6.1.3 Web-Sockets

This is a communication protocol that provides the ability to both send and receive
data simultaneously; this ability is known as full-duplex. This protocol enables
interaction between a web browser and a web server. It is considered lightweight
compared to HTTP as once a web server desires to send information to the web
browser, it does not require a request first to be created by the web browser to
facilitate the transfer. This can be especially useful for latency-sensitive applications
such as an online game with real-time components. This can be additionally useful
in a situation when the server must send updates in real-time, such as a text-based
chat system (Kitamura, 2010). Following Samhita Alla’s tutorial on Web-
Sockets(Samhita Alla, 2018), a short experiment was created using Python, Flask
and SocketlO. Once a browser is launched, it automatically attempts to connect to
the local socket server, as shown directly below Figure 14, using the SocketlO
JavaScript library.

<script src="https://cdnjs.cloudflare.com/ajax/libs/socket.io/1.7.3/socket.iox.min.js"></script>

<script type="text/javascript">
var socket = io.connect('http://' + document.domain + ':' + location.port);

Figure 14 Browser Socket/O Connect Code

Once a username and a message are entered in the HTML form Figure 15, this is
forwarded to the server.

var form = $('form').on("'submit', function (e) {
let username = $('input.username').val()
<form action="" method="POST"> let input = $('input.message').val()
<input type="text" class="username" placeholder="Username" /> socket.emit('event', {

<input type="text" class="message" placeholder="Message" /> username: username,
<input type="submit" /> message: input
</form> 1)
12l

Figure 17 HTML Form
Figure 15 Form Submit Code

The server replies with the data it received; this
can be seen in Figure 17. In a non-experimental scenario, this logic would be more
complex, such as sanitising the message before | esoccetio.on(event

. . def eventHandler(json, methods=["GET", "POST"]):
forwarding it to other peers. Once the server socketio.enit("response”, json)
responds, and the event is handled in the

browser, as showcased in Figure 18,

Figure 16 Server Logic

socket.on('response’, function (msg) {
if (typeof msg.username !== 'undefined') {
$('div.message_holder"').append('<div> <b style="color: #000">' + msg.username + ': ' + msg.message + '</div>');

¥

Figure 18 Response Handler

User1: To be, or not to be, that is the question

the browser appends the new User1: Whether 'tis nobler in the mind to suffer
. User1: The slings and arrows of outrageous fortune,
messages to the previous messages Userl: Or to take arms against a sea of troubles
and renders the results, as shown in Userl: And by opposing end them. |
serl Message Submit Query
F|gure 19. Figure 19 Browser Display

20

6.2 Databases

Databases are an organised collection of data stored on a computer system
(Oracle, n.d.). They are generally classified into SQL and NoSQL databases. While
the functionality provided by a specific database can significantly vary depending
on the system being used, they all generally provide the following

e Creating, retrieving, updating and deleting of entries

e Support for concurrency

e Support for recovering a database in the event of corruption
e Providing authorisation and controlling access to the data

e Remote access

e Enforcing user-created constraints to aid in data consistency
e Importing and exporting of data

Databases can be centralised or distributed. A centralised database is helpful for a
small organisation with ‘lightweight’ requirements. The centralised database design
is relatively simple to understand and has low maintenance. A single system
residing within a single location contains the database. If this system fails, the entire
data may be lost.

In a distributed system, multiple ‘nodes’ are spread across different locations,
which are geographically separate from each other. These systems have increased
difficulty in maintaining data consistency. These systems are very performant due to
the possibilities of creating distributed workloads and has superior fault tolerance
due to the distribution of data instead of it being held in a central location. These
systems are also capable of achieving higher uptimes.

Databases often employ redundancy to increase data availability to increase
performance and aid in fault tolerance through the use of Replication. This involves
sharing updates to the database among multiple network-attached distributed
databases. This is generally achieved in either a ‘Master-Slave’ or a ‘Multi-Master’
relationship.

There is a single ‘Master’ process in a' Master-Slave' relationship that maintains
control over one or many slaves. Only the Master has permission to create updates
to be applied. The Master process records updates to be applied by the slaves.
These updates are propagated to the networked-attached slaves, who return a
confirmation once they successfully applied an update.

21

Databases scalability can be classified into Vertical and Horizontal. This can be
visualised in Figure 20"". Vertical scaling, also known as scaling up, involves adding
additional resources to an existing machine. This is done by improving one or
multiple components such as its Central Processing Unit (CPU), Random Access
Memory (RAM), storage capacity, network bandwidth or any other component.
Vertical scaling can quickly become limited by hardware limitations, for example,
the amount of memory a motherboard can support. Once a limit has been reached,
it requires purchasing entirely new hardware to migrate, which can cause downtime,
with downtime already compounded with non-hardware limited upgrades such as a
simple addition of memory to machine (Craig S. Mullins, 2018).

HORIZONTAL SCALING VERTICAL SCALING

Figure 20 Horizontal vs Vertical Scaling

Horizontal scaling, also referred to as scaling out, is the process of adding
additional hardware to a system, generally in the form of ‘nodes’ in a distributed
database design. Removing ‘nodes’ from the network is known as scaling in. As
hardware cost declines, it becomes cost-effective to adopt many ‘commodity’
hardware computers in an interconnected network and distribute the workload
among them. This also comes with the simplicity to upgrade in the future by adding
an additional ‘node’ to the network. This approach is limited by the software’s ability
to efficiently take advantage of distributed computing resources (Craig S. Mullins,
2018).

Horizontal and vertical scaling can be combined. The network-connected machines
in a horizontally-scaled system can be upgraded. The ideal situation is a
combination of both horizontal and vertical scaling by applying a balance.

" (Chandan Kumar Singha, 2019).
22

23

6.2.1 SQL

Structured Query Language (SQL) acquired its name from the language used in
accessing the data stored. SQL can be considered a lightweight database
equivalent of server-side scripting. SQL can be considered high level, aiding in its
simplicity. When creating a query, an attempt is made to specify the desired query;
instead of how to get it, SQL will devise how to obtain the data in the most efficient
manner, this makes SQL nonprocedural. Another stand-out feature is its robust
JOIN clause. This enables developers to join data spanning multiple tables through
a predefined relationship with a relatively simple syntax. An example of a join clause
can be seen in Figure 21.

SELECT
*
FROM Invoice
INNER JOIN Customer
ON Customer.Id Invoice.CustomerId

Figure 21 SQL Example

SQL is known as a relational database. This is having data stored in tables
containing rows and columns. Each entry is stored as a row in the table, and each
column represents the specific data type and name associated. Tables have
relationships to other tables through the use of primary and composite keys, often
an Id. This relationship is known as a schema. The schema generally must be
defined before any data can be added to the database.

Any data stored in a SQL database must be structured. Time must be spent
focusing on the development of an effective schema to ensure data consistency. A
poorly devised schema can present challenges in future development due to the
rigidity of constraints applied in the schema.

Examples of popular SQL databases include MySQL, MariaDB, Microsoft SQL
Server and more. As many of these database technologies have existed for multiple
years, MySQL for example, was initially released in 1995 making it twenty-five years
old at the time of writing. They can be considered mature technologies and have
relative stability in most application environments.

24

6.2.2 NoSQL

NoSQL, coming from the phrase ‘Not Only SQL’, has gained recent popularity due
to its advantages over a NoSQL database that has been heralded as the default de-
facto standard for databases. If the requirements for data storage are not
defined/are unclear/there is a large amount of unstructured data in use, developers
may not have the luxury of creating a schema that can accurately model their
needs, or it may not be possible. This is where NoSQL databases fit.

NoSQL is designed to be flexible in its schema. Many NoSQL databases achieve
their flexibility in different approaches. They can be loosely classified into the
following types

e Document

o Key-Value

e Graph

e Column Store

There rise for non-relational databases came with the evolution of the internet.
Coined as the ‘Web 2.0’ or ‘The Participatory Web’ (Reisdorf, 2012), refers to the
development and evolution of websites that focus on user-generated content with
interoperability with other services. These services developed a need for Big Data.
Big Data is processing “..large, diverse sets of information that grow at ever-
increasing rates” (Troy Segal, 2019). NoSQL databases are capable of scaling out
much easier than a traditional SQL database system, due to the trade-offs being
made, such as having ACID (Atomicity, Consistency, Isolation, Durability)
transactions (Adam Fowler and Eugene Ciurana, 2017). Instead, NoSQL databases
focus on high availability and flexibility in the schema or lack of a schema
(Terblanche, 2020).

25

Document

Document-based databases store data in documents. Variations exist between the
database being used. Generally, the formats are JSON, Extensible Markup
Language (XML), or YAML Ain’t Markup Language (YAML), with JSON being the
most popular. An example of what a document may look when stored in JSON can
be seen in Figure 23. A document can be contained in a Collection, which contains
multiple documents.

The structure of a document is not predefined and

{ . can vary from other documents. This can be
"id": 1, advantageous, especially when defining a schema
"age": 25, can become difficult. A document is similar to how
"name": "John", developers create an instance of an object in the
"friends": [programming equivalence; a class is easier

" Y described in a JSON format than in a relation row
Anthony", , ,

" : " and column table. Querying multiple documents
Christa",

,) often employs the use of an Id value created by the
Robert", database in use. The most popular document-

"Christopher" based database is MongoDB (DB-Engines, 2020).

]
} MongoDB stores its documents in a Binary JSON

(BSON) format, which has full interoperability with
JSON. An example can be seen in Figure 22" of
how JSON is converted to BSON in MongoDB. MongoDB inc develops MongoDB.
It is developed primarily in

Figure 23 Document Example

C++ Wlth an Inltlal release |n { : } - \Xx16\x00\x00\x00 // total document size
\x02 // 0x02 = type String
2009, making it eleven hell0\x00 // field name
. \x06\x00\x00\x00wor1ld\x00 // field value
yeaI’S Old (DB'Eng|neS, \x00 // 0x00 = type E00 ('end of object')

2020). Natively MongoDB

uses a JavaSCrlpt She" 'tO { H , 5.05, 19861} - \x31\x00\x00\x00

\x04BSON\x00

interface with an \X26\X00WX001x00
\x02\x30\x00\x08\x00\x00\x00awesome\x00
administrator. In the annual AX@1\x31\x00\x33\x33\x33\x33\x33\x33\x14\x40
\X10\x32\x00\xC2\x07\x00\x80
StackOverflow developer \x00

survey, MongoDB ranked e

as the most used NoSQL
database by developers in
their workplace (StackOverflow, 2020).

Figure 22 JSON to BSON

2 (MongoDB, n.d.)
26

An experiment of MongoDB was

-{
created using Python, Flask and B SRS
HTML. This is a showcase of a basic N cernane®: “adnin’.
‘Login’ SyStem by querying MOHQODB } "password": "S5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8"
to check if a user exists with an
. “{
entered email and password. In RS |
"$oid": "S5f58fd535¢c49038ada2laSle
MongoDB, a database was created 3, i
username : Liana’,
name ‘|ogin_db” Containing a ; "password": "e727d1464ae12436e899a726da5b2f11d8381b26"
collection titled ‘users’. Two entries
. Figure 24 login_db.users collection
were populated. Each entry contains a
username and password field, with an Id app = Flask(__name_)
generated by MongoDB by default, as shown
. . @app.route("/", methods=["POST", "GET"])
in Figure 24. def home():
return render_template("login.html")
A Python Flask server was created to serve a
basic login page to a web browser, with _ ,
. . . if __name__ == "__main__":
server code in Figure 25. Some code in the app. run(debug=True)
home function is excluded for brevity. Figure 26 Flask Server
Login.html, the content being served
to the web browser, can be seen in <form action="/" method="POST">
. <label for="username">Username</label>
Flgure 26 Once the form has been <input type="text" id="username" name="username">
completed and submitted to the

<label for="password">Password</label>

server, |t quel’ieS the database for <input type="password" id="password" name="password">

the hash of the entered password. If
the entered credentials match an </Form>

<input type="submit" value="Submit">

existing user, a success message is
returned; otherwise, an

Figure 25 HTML Login Form

invalid credentials message | f request.method == "POST":

with a form to re-enter the {
credentials is returned, as

user = userDB.find_one(

"username": request.form["username"],
"password": hashlib.shal(

shown in Figure 27. request.form["password"”].encode("utf-8")
) .hexdigest(),

}

In a production scenario,)
. if user is not None:

more proceSSIng WOUld return f"Successful login for {request.form['username’]}"
occur, such as the creation else: ¢

return
of user session or the "<h3>Invalid Credentials</h3><p>Please try again</p><hr>"

sanitising of user input.

+ render_template("login.html™)

Figure 27 Login Server-Login

27

Key-Value

Key-Value databases can be considered the simplest of all types. They can be
likened to a map/dictionary or an associative array in different programming
languages. They employ a data structure that consists of a unique key that is used
to associate a value, this can be visualised in Figure 28. The key can consist of any
type of data, and the value associated with the key also can be of any type. They
are especially useful when storing large amounts of data that do not require
complex queries. This database achieves the best results from horizontal scaling
(Amazon Web Services, n.d.). Redis is a popular, in-memory implementation of this
type of database. It was ranked as the number four position for top developer tools
of 2019 by stackshare.io, a website about sharing technology stacks of different
organisations (StackShare Team, 2020).

SQL Key - Value
Id Name
Keyl2 ——— > | {'name"Yasmin}
1 56 Yasmin
Key28 ——— > | {'name':'Pascal’}
2 57 Pascal
3 58 Caelin Key4 ———— > | {'name''Caelin’}

Figure 28 SQL vs Key-Value

Graph
Graph-based NoSQL consists of the use of two entities (PhoenixNAP, 2020)

e Nodes for storing data
e Edges for storing the relationship between nodes

A visual representation can be seen in Figure
29. In this example, each node holds Graph
information about a person. The edges define
the relationships a person has with another.
As this type of storage can be very data-
specific, it is not commonly used. Graph
datastore is particularly useful when needing
to find patterns in relationships. An example of

Alex
Age: 16
Gender: F

Yasmin
Age: 21
Gender: F

Friends With

Colleague with

a use case might be a social network to store
data on the relationship between its users.
RedisGraph and Neo4j are examples of such
databases.

28

Caelin
Age: 15
Gender: M

Pascal Brothefs With
Age: 23

Gender: M

Figure 29 Graph NoSQL

Column Store

Column store, also known as Wide Column, stores data in tables with rows and
columns. Data is stored in a ‘cell-like’ structures in columns known as Column
Families. Column families can be grouped into super column families. Virtually
unlimited number of columns and column families can exist and do not require a
complete schema to be initially created. Columns can be created at runtime as
needed. A visual representation can be seen in Figure 30. A popular implementation
of Column Store is Apache Cassandra.

Person
Name Gender Address Education
City Portlacise Heigher Level ITCarlow
1 Lily F County Laois Secondary | Scoil Chriost Ri
Primary Whitehill Cork
City Naas Heigher Level | Trinity College
2 Ted M County Dublin Secondary | St.Mary's CBS
Primary St.Patrick's NS
Super Column Family
Column Family
Column

Row Key

Figure 30 Column Store

Apache Cassandra (Cassandra) is an open-source database developed using Java.
It is used by over 40% of the fortune 100 companies, including Apple, GitHub,
Microsoft, Netflix, Spotify and many more (Apache, n.d.). Cassandra is best known
for its performant abilities (Rabl, et al., 2012). It can have consistently high
operations per second, with powerful capabilities to horizontally scale out nodes
(Jonathan Ellis, 2013). It designed on a master-less approach to decentralisation,
intending to eliminate a single-point-of-failure in a cluster. Cassandra’s high
performance is based on the philosophy of three principles (Alex Bekker, 2018)

e Storage space is cheap

o Writes are fast

¢ Networking is an expensive endeavour
Once a node receives a write request, the node will write to the commit log. This is
used storing information about its in-memory cache. The write request is
concurrently placed into a table in memory known as a ‘MemTable’. This table gets
written to disk cache into ‘SSTables’. Once the memtable is written to disk, the
Commit Log is purged of its information. If a read request is received, Cassandra
first checks its memtable followed by multiple different caches Cassandra creates,
such as the row key cache or the partition key cache.
29

7. Security

One of the foundational requirements of security is trust. There is no escaping
trusting an entity in security. The trust might be put into the centralised server that a
user connects to or in the application-developer to implement best practices during
development. Trust, once damaged, can become challenging to regain.

Transparency is fundamental in gaining user trust. An organisation/project must be
transparent to its users, in general, as transparent as possible. Transparency can
come in many forms, such as undergoing independent security audits or open-
sourcing the applications' source code.

Open-source applications can be debated in security. On one side, the scale of
developers now available to improve a codebase expands to the entire developer
community. On the other side, a malicious individual now has access to a deeper
understanding of the internals of a system which before may have remained a
shrouded mystery.

Encryption aids in protecting data from unauthorised parties. It can be implemented
at different stages, such as encryption-in-transit through the use of HTTPS or
encryption-at-rest by enciphering the data in its local storage. Encryption can be
described as the “..process that scrambles readable text so it can only be read by
the person who has the secret code, or decryption key” (Alice Grace Johansen,
2020).

End-To-End Encryption (E2EE) is about encrypting data in transit from the origin to
the destination. It prevents any listeners, including a central server, from
intercepting the data in the middle of the endpoints. This differs from the general
encryption implementation employed, which focuses on protecting data in transit
between the user and the central server. With E2EE, the users hold their decryption
keys other parties are unable to decipher the required keys. E2EE in protecting user
data can be considered more robust than encryption in transit alone (Proton Team,
2018).

30

Alice
Alice Writes a Alice encrypts the The encrypted
message message message is sent
Pleasure to meet you —_— 14e5796¢12f5¢1797r5
Server

The server recieves the encrypted message and is unable to
read the unencrypted message.

14e5796¢12ff5¢1797r5

b

Bob
Bob recieves the Bob decrypts the Bob reads the
encrypted message message intended message
14e5796¢f2ff5¢1797r5 —_— Pleasure to meet you

Figure 31 End-To-End Encryption

To exemplify E2EE, see Figure 31.
In it, Alice desires to send Bob a
message. Alice encrypts the
message to be sent, using a
method only Bob can decrypt. The
encrypted message from Alice is
forward to the server. The server
receives the message; however, it
is the encrypted form, and the
server is unable to understand the
message Alice intends for Bob. The
server passes the encrypted
message to Bob. Once Bob
receives the message from the
server, he decrypts the message to
view the original message. In this
scenario, the message remained a
secret between Alice and Bob. If a
third party attempts to listen at any
point, they will receive the
encrypted message, which they are
unable to decrypt.

Zero-knowledge encryption is using encryption to make data inaccessible to the
service provider while it is at rest. Any data associated with the user can only be
decrypted using their private key. With this form of encryption, if a data breach
occurs, this ensures that the data remains protected (Ben Wolford, 2019).

The difference between E2EE and Zero-knowledge encryption is the medium in
which it is. E2EE is intended to obfuscate information in transit, as it passes
traverses a network between the recipients and senders devices. Zero-knowledge
encryption is about obfuscating information once it has finished traversing a

network, known as at rest.

31

8. Supplemental Updates

Throughout the project, additional research was required. Included within this
section is additional information on new or existing topics where information was
gathered.

Web-Sockets

As a simplification, a Web-Socket can be in one of two states

e Open
e Closed

An open connection can send and receive data; alternatively, it could be called an
‘alive’ connection. A connection can have a configurable timeout associated. If this
time is reached, the client will send a keep-alive connection ping, hence the name
of an ‘alive’ connection, that, if responded to, will prevent the connection from being
closed. A closed connection is no longer capable of sending or receiving data. If the
exchange of data is desired at a state of a closed socket, a connection to the server
or client will need to be re-established. Web-Socket connections are lightweight to
keep open, and a server often can handle hundreds of thousands of active
connections.

Python
FastAPI

FastAPI can be described as

..a modern, fast (high-performance), web framework for building
APIs with Python 3.6+..

Sebastian Ramirez, creator of FastAPI

It is a web framework designed for API development; At its' centre, it is about using
modern Python features such as type hints and conformance to standards. FastAPI
is much like a ‘wrapper' for the Starlette framework. Starlette is an Asynchronous
Server Gateway Interface (ASGI) framework. Starlette supports the generation of
OpenAPI specification (Formally known as Swagger). FastAPI further utilises the
pydantic package to enforce Python type hints of a defined JSON schema.
Combining pydantic with Starlette's OpenAPI documentation provides a high-
performance and standards-oriented framework for creating APIs.

32

At the beginning of the project life-cycle, Python's Flask was the prospective
technology; A hesitation of Flask was in place due to Flasks' and Pythons' inherent
concurrent inabilities due to the Global Interpreter Lock within Python's
architecture. With the interest of a comparison, a micro-benchmark was devised.

To test the response time and concurrent capabilities of Flask and FastAPI, the
Locust Load Testing tool was used. This is a Python-based tool that uses the
Greenlet package to create Green Threads to swarm the intended server with the
desired amount of concurrent users executing Python-defined instructions. Green
threads (Also known as a virtual thread) vary from standard native operating system
threads by the space they are scheduled within. A green thread is scheduled
exclusively within a virtual machine or a runtime library instead of using the
underlying operating system. This attempts to simulate a concurrent environment
without true parallelism occurring. This micro-benchmark simulated a login request.
The task to be completed by each user can be seen in Figure 32.

from locust import HttpUser, task
class QuickstartUser(HttpUser):
@task
def test(self):
self.client.post("/", data={
"username": "admin",
"password": "password"

b))

Figure 32 Locust Micro-benchmark

This micro-benchmark was executed with two thousand users, beginning at
zero and ramping up at fifty users every second. Once the two thousand
users were reached, the test continued to run for five minutes. As Flask and
FastAPI are foundationally frameworks and not servers, they require a
server to run upon. FastAPI was executed on Uvicorn, while Flask on
Gunicorn. The results of this can be seen in table 1 and 2.

Requests # Fails 90%ile (ms) # Requests # Fails 90%ile (ms)
39,495 14,105 30,000 248,604 0 2,200
Table 2 FastAPI Result Table 1 Flask Results

As Flask did not net a desired result, FastAPI| was chosen. FastAPI did not

fail a single request; this raised the question: How many more users could
33

FastAPI handle? More benchmarks were executed, scaling the simulated
users vertically up to seven thousand and fourteen thousand yielded the
results shown in table 3 and 4.

Requests # Fails 90%ile (ms) # Requests # Fails 90%ile (ms)
623,656 4,071 5,100 580,292 31,145 8,400
Table 4 FastAPI 7,000 Users Table 3 FastAPI 14,000 Users

With a ninetieth percentile response time of 5,100ms and 4,071 fails at
seven thousand users, it was not desirable to push FastAPI further.

Tkinter

The Tkinter package comes as part of the Python standard library. It stands for Tk
interface'. It is an interface to the Tcl's programming language Tk GUI toolkit. The
Tk toolkit became the framework the reference client was created upon. Paired with
the ‘Websocket-client’ package, ‘PyCryptodome’ package for cryptography and the
Python standard library for JSON parsing, the required capabilities of a client were
fulfilled.

API Development

Documentation

As part of developing an API for developers came the need to create developer-
focused documentation. The OpenAPI standard appears to be one of the most
popular standards, additionally overseen by the Linux Foundation. It initially was
named the Swagger Specification only to become a separate project. It is a
specification that aims to describe how RESTful API's should be consumed.
Multiple tools exist that can produce visualisations or generate test cases based on
this. FastAPI supports the generation of OpenAPI documentation automatically by
using Starlette as a back-end that natively incorporates this generation.

APl Tools

Within a specific field, certain tools aid in development. In the Data Science field, a
Data Scientist may utilise Jupyter Notebook. For API development, tools exist that
aid in developing the application. A specific set of software tools often built on

Electron or Chromium, allow the designing and testing of APIs' created. A popular

34

example of this tool is ‘Postman’. It allows the sending of requests through a
graphical user interface (GUI). For example, a developer may need to send a multi-
part form to a specific URL using a PUT HTTP method. This where these tools
come into usage.

A developer can send complex or simplistic requests to a specified URL with
complete control over the HTTP header. Additional information is provided once the
request is responded to, such as

e HTTP Status

e Time for the request to complete
e Overall size of the request

e Body Size

e Header size and much more

Elixir

Elixir is a functional general-purpose programming language that aims to provide
the Erlang feature-set with syntax heavily inspired by Ruby. It runs on Bogdan's
Erlang Abstract Machine (BEAM) virtual machine (VM) and is extensible to native
Erlang functions through the bytecode of the BEAM VM. Like Erlang, Elixir is
particularly effective within high-concurrency environments with desired fault-
tolerance handling. Elixir uses the same Supervisor model like Erlang to handle
processes, with the ‘let it crash' philosophy.

Cryptography

Cryptography itself can come in multiple forms. For this project, the particular
topics of interest are in the form of Symmetric-key cryptography and Asymmetric-
key (Also known as Public-key) cryptography. To note, from this point forward, the
content the encryption or decryption is performed upon will be referred to as
‘plaintext'. Plaintext that is encrypted is known as "Ciphertext'.

Symmetric Cryptography

Symmetric cryptography is the usage of a singular key for both encryption and
decryption of plaintext. This type of cryptography is, on encryption and decryption
time alone, overall faster by design due to the use of a singular key and key length
is often shorter. A visualisation of this is showcased in Figure 32

35

MIIEOwIBAAK..

Encryption Decryption
Secret message ----------- > 02b965d8f044.. -----------3 > Secret message

Figure 33 Symmetric Cryptography Diagram

This type of cryptography is often used in file or database encryption due to the
performance gain over asymmetric and the requirement for a singular key for file
control. Examples of Symmetric algorithms are listed below.

e AES/Advanced Encryption Standard (Rijndael)
e DES/3DES

e Serpent

e Twofish

Asymmetric Cryptography

Asymmetric Cryptography uses a two-key system instead of a singular key by
Symmetric Cryptography. The two keys are generally referred to as a Public and
Private key. A disadvantage of the Symmetric key system is key transmission; every
key share posses the risk of interception by an unintended third party. Asymmetric
cryptography solves this by allowing the sharing of the public key. Once generating
cryptographic keys, effectively two keys are created. The private key is kept secret
and should not be shared or publicly exposed. The public key can be freely shared
with third parties. The public key is used to create ciphertext that can only be
decrypted to plaintext if the private key is known. The process of using asymmetric
cryptography can be seen in Figure 34.

36

> O

2200VDYi.. 6eFXVLMD. .

Encryption Decryption
Secret message ----------- > 02b965d8f044.. -----------> Secret message

Figure 34 Asymmetric Cryptography Diagram

PEM Format

The PEM (Privacy-Enhanced Malil) is a file format for storing and sending
cryptographic keys and certificates. It has become standardised by the IETF
(Internet Engineering Task Force). As exchanging binary data (Such as a private key)
can be problematic over a network, PEM is used to solve this issue. PEM stores the
files in a base64 encoded format.

The file begins with five dashes and a 'BEGIN', followed by a label and an additional
five dashes. The file ends in the same format using an "END' in place of the 'BEGIN'.
PEM is used to store keys by the reference client. An example of a PEM file can be
seen in Figure 35.

fIohV3etQecGfYTkcRQZ5Y8bzI4MBIVADFDscb6ZRBv7FRt1CMhQPuCfe7yR3CRD
C93Q6CN2J1ofCLtpHFhcAgfaFXR7758Qcqil1MpLsSSritf20QNTIJeCR1VZUOtG
mtoYbittw@aE28ZzxcEYmZadzKporDgp/dy5DKbKrBTRxUe7ywAHEWIWXgX+GOT2
12K9FVeolWY1sKM2syKNeN7XkzCDOX6GKUOEeM8HT6FN8VI8uu20P33TVXQk=

Figure 35 PEM Example

Cassandra

Cassandra is a distributed NoSQL Column-Store database with a highly rigid
schema. Cassandra queries are completed through the use of the Cassandra Query
Language (CQL). CQL on a high level can be likened to SQL with the lack of
relational functions such as JOIN or GROUP BY.

Cassandra is particularly effective at write performance and horizontally scaled
distribution with fault tolerance. Cassandra achieves the write performance by
storing much of the information in main memory. Once a write request arrives,
Cassandra will write the request to a ‘commit log' and in-memory to the Memtable.
The Memtable behaves like a cache for temporary storage. At different conditions,
the Memtable is written from main memory to the disk into an SSTable (Sorted
Strings Table). This is an optimised immutable table that provided persistence of

37

data. The commit log is used to prevent Cassandra from being too bound to the
SSTable; As the SSTable is immutable, a modification or update will need a new
SSTable to be created.

Another reason Cassandra has a performance advantage is through the column-
store design. Assuming a user table exist, such as in table 5.

Id Username Age
56 Sunbeam 24
57 GentleMitten 20

Table 5 User Table

If we desire to read all ages from the table in SQL, a query may look like this
‘SELECT Age FROM Users’. A traditional SQL database will read all the columns
from left to right. This includes the redundant username column. A Cassandra query
will read the Age column downwards, never having to read the Username column.
This is the reason Cassandra is a ‘Column-Store' database. This read difference is
highlighted in orange in Tables 6 and 7.

Id Username Age Id Username Age

56 Sunbeam 24 56 Sunbeam 24

57 GentleMitten 20 57 GentleMitten = 20
Table 7 SQL Read Table 6 Cassandra Read

38

9. Further Research

This document outlined multiple points of research. However, further research could
be done in all areas of the project. In particular

e WebRTC - Developing a working prototype to experiment with its usage,
particularly in the usage of TURN servers.

e Encryption — Further search into more technical details of how the
cryptography functions programmatically and mathematically.

e Databases — Development of a functional prototype to showcase Column
Store in Cassandra.

10. Bibliography

Adam Fowler and Eugene Ciurana, 2017. DZone. [Online]

Available at: https://dzone.com/refcardz/nosql-and-data-scalability-20?chapter=1
[Accessed 7 November 2020].

Alex Bekker, 2018. ScienceSoft. [Online]

Available at: https://www.scnsoft.com/blog/cassandra-performance#write
[Accessed 5 November 2020].

Alfred Ng, 2020. As Defcon goes virtual, organizers step up efforts to prevent online
harassment. CNet.

Alice Grace Johansen, 2020. Norton. [Online]

Available at: https://us.norton.com/internetsecurity-privacy-what-is-encryption.html
[Accessed 4 November 2020].

Amazon Web Services, n.d. aws.amazon.com. [Online]

Available at: https://aws.amazon.com/nosql/key-value/

[Accessed 1 November 2020].

Apache, n.d. Apache Cassandra. [Onling]

Available at: https://cassandra.apache.org/

[Accessed 5 November 2020].

Bazzell, M., 2020. Privacy, Security, & OSINT Show 185. [Sound Recording].

Ben Wolford, 2019. ProtonMail. [Online]

Available at: https://protonmail.com/blog/zero-access-encryption/

[Accessed 7 November 2020].

Briar, n.d. BriarProject.org. [Onling]

Available at: https://briarproject.org/how-it-works/

[Accessed 5 November 2020].

39

Chandan Kumar Singha, 2019. Medium.com. [Online]

Available at: https://medium.com/@cskkman/scaling-load-balancing-4a2447fa4529
[Accessed 31 October 2020].

Cloudflare, n.d. Cloudflare. [Online]

Available at: https://www.cloudflare.com/learning/ssl/what-is-ssl/

[Accessed 29 October 2020].

Craig S. Mullins, 2018. DZone.com. [Online]

Available at: https://dzone.com/articles/what-do-we-mean-by-database-scalability
[Accessed 31 October 2020].

DataPrivacyManager, 2020. DataPrivacyManager. [Online]

Available at: https://dataprivacymanager.net/security-vs-privacy/

[Accessed 28 October 2020].

David E.Sanger and Brian X.Chen, 2014. Signaling Post-Snowden Era, New iPhone
Locks Out N.S.A.. The New York Times.

DB-Engines, 2020. DB-Engines. [Online]

Available at: https://db-engines.com/en/ranking

[Accessed 1 November 2020].

DB-Engines, 2020. DB-Engines CouchBase vs MongoDB. [Online]

Available at: https://db-engines.com/en/system/Couchbase%3BMongoDB
[Accessed 3 November 2020].

Def Con Official, n.d. Def Con 28 Safe Mode - Discord Server. [Online]

Available at: https://defcon.org/html/defcon-safemode/dc-safemode-discord.html
[Accessed 17 October 2020].

DuckDuckGo, G. T., 2020. Trends.Google.com. [Online]

Available at: https://trends.google.com/trends/explore?date=today %205-
y&qg=duckduckgo

[Accessed 27 October 2020].

E. Rescolra, 2000. tools.ietf.org. [Online]

Available at: https://tools.ietf.org/html/rfc2818

[Accessed 29 October 2020].

Electronjs, 2020. electronjs. [Online]

Available at: https://www.electronjs.org/

[Accessed 27 October 2020].

element.io, 2020. Element. [Online]

Available at: https://element.io/

[Accessed 27 October 2020].

Eric S. Yuan, 2020. [Online]

Available at: https://blog.zoom.us/a-message-to-our-users/

[Accessed 1 April 2020].

40

Eric S. Yuan, 2020. Zoom Acquires Keybase and Announces Goal of Developing the
Most Broadly Used Enterprise End-to-End Encryption Offering. Zoom Blog.

Ewen MacAskill and Glenn Greenwald, 2013. NSA Prism program taps in to user
data of Apple, Google and others. The Guardian.

Fanghao (Robin) Chen, 2016. blog.Discord.com. [Online]

Available at: https://blog.discord.com/using-react-native-one-year-later-
91fd5e949933

[Accessed 26 October 2020].

Felix Richter, 2014. Statista. [Online]

Available at: https://www.statista.com/chart/3002/how-internet-users-adapted-
after-snowden-revelations/

[Accessed 27 October 2020].

Frederic Lardinois, 2019. techcrunch. [Online]

Available at: https://techcrunch.com/2019/05/07/kotlin-is-now-googles-preferred-
language-for-android-app-
development/?guccounter=1&guce_referrer=aHROcHMG6Ly9Ibi53aWtpcGVkaWEub
3JdnLw&guce referrer_sig=AQAAABIDD3mswPX7mYXSOtp3mFbnm2fWHi6806NEL
gjztNoesK7JNF10QKpJBS5UBXAXIXq

[Accessed 27 October 2020].

GitLab, B., n.d. BriarProject.org. [Online]

Available at: https://code.briarproject.org/briar/briar/-/blob/master/bramble-
core/src/main/java/org/briarproject/bramble/db/DatabaseModule.java

[Accessed 26 October 2020].

Glenn Greenwald, 2013. NSA collecting phone records of millions of Verizon
customers daily. The Guardian.

Jonathan Ellis, 2013. DataStax. [Online]

Available at: https://www.datastax.com/blog/2012-review-performance
[Accessed 5 November 2020].

Jozsef Vass, 2018. blog.discord.com. [Online]

Available at: https://blog.discord.com/how-discord-handles-two-and-half-million-
concurrent-voice-users-using-webrtc-ce01c3187429

[Accessed 26 October 2020].

Kitamura, M. U. a. E., 2010. HTML5Rocks. [Online]

Available at: https://www.html5rocks.com/en/tutorials/websockets/basics/
[Accessed 31 October 2020].

letsencrypt.com, 2020. letsencrypt.com. [Online]

Available at: https://letsencrypt.org/stats/

[Accessed 29 October 2020].

41

Librarian, D., 2020. support.Discord.com. [Online]

Available at: https://support.discord.com/hc/en-us/articles/36004136031 1
[Accessed 26 October 2020].

Matt Nowack, 2019. blog.discord.com. [Online]

Available at: https://blog.discord.com/using-rust-to-scale-elixir-for-11-million-
concurrent-users-c6f19fc029d3

[Accessed 26 October 2020].

Matthew Hodgson, 2018. matrix.org/blog. [Online]

Available at: https://matrix.org/blog/2018/04/26/matrix-and-riot-confirmed-as-the-
basis-for-frances-secure-instant-messenger-app

[Accessed 27 October 2020].

mhoye, 2019. discourse.mozilla.org. [Online]

Available at: https://discourse.mozilla.org/t/synchronous-messaging-at-mozilla-the-
decision/50620

[Accessed 27 October 2020].

MongoDB, n.d. Mongodb.com. [Onling]

Available at: https://www.mongodb.com/json-and-bson

[Accessed 5 November 2020].

Mozilla, 2019. MDN Web Docs. [Online]

Available at: https://developer.mozilla.org/en-
US/docs/Web/API/WebRTC_API/Protocols

[Accessed 31 October 2020].

Nick Stripe, 2020. ons.gov.uk. [Online]

Available at:
https://www.ons.gov.uk/peoplepopulationandcommunity/crimeandjustice/bulletins/
crimeinenglandandwales/yearendingmarch2020#computer-misuse

[Accessed 28 October 2020].

Oracle, n.d. Oracle. [Onling]

Available at: https://www.oracle.com/database/what-is-database.html
[Accessed 31 October 2020].

PhoenixNAP, 2020. PhoenixNAP. [Online]

Available at: https://phoenixnap.com/kb/nosgl-database-types

[Accessed 1 November 2020].

Proton Team, 2018. ProtonMail. [Online]

Available at: https://protonmail.com/blog/what-is-end-to-end-encryption/
[Accessed 4 November 2020].

ProtonMail, G. T., 2020. Trends.Google.com. [Online]

Available at: https://trends.google.com/trends/explore?date=today %205-
y&qg=ProtonMail

[Accessed 27 October 2020].

42

ProtonVPN, G. T., 2020. Trends.Google.com. [Online]

Available at: https://trends.google.com/trends/explore?date=today %205-
y&q=ProtonVPN

[Accessed 27 October 2020].

Publication, C. S., 2020. Central Statistics Office. [Online]

Available at: https://www.cso.ie/en/releasesandpublications/ep/p-
sic19/socialimpactofcovid-19surveyapril2020/

[Accessed 27 October 2020].

pypi, 2018. Pocketsphinx Python. [Online]

Available at: https://pypi.org/project/pocketsphinx/

[Accessed 31 October 2020].

Rabl, T. et al., 2012. Solving Big Data Challenges for Enterprise
ApplicationPerformance Management, s.l.: VLDB Inc.

Reisdorf, G. B. a. B., 2012. The Participatory Web, s.|.: ResearchGate.

Samhita Alla, 2018. codeburst.io. [Online]

Available at: https://codeburst.io/building-your-first-chat-application-using-flask-in-
7-minutes-f98de4adfa5d

[Accessed 5 November 2020].

Signal, G. T., 2020. Trends.Google.com. [Online]

Available at: https://trends.google.com/trends/explore?date=today %205-
y&a=%2Fm%2F012pq75w

[Accessed 27 October 2020].

StackOverflow, 2020. StackOverflow. [Online]

Available at: https://insights.stackoverflow.com/survey/2020

[Accessed 3 November 2020].

StackShare Team, 2020. StackShare. [Online]

Available at: https://stackshare.io/posts/top-developer-tools-2019

[Accessed 1 November 2020].

Stanislav Vishnevskiy, 2017. Blog.Discord.com. [Online]

Available at: https://blog.discord.com/how-discord-stores-billions-of-messages-
/fabec7eedc?

[Accessed 26 October 2020].

Tasos Lazarides, 2015. toucharcade. [Onling]

Available at: https://toucharcade.com/2015/09/14/ex-fates-forever-developers-
making-discord-a-voice-comm-app-for-multiplayer-mobile-games/

[Accessed 26 October 2020].

Terblanche, K., 2020. Medium.com. [Online]

Available at: https://medium.com/dvt-engineering/when-to-use-a-nosql-database-
over-a-sql-database-daac89059d8b

[Accessed 7 November 2020].

43

Troy Segal, 2019. Investopedia. [Online]

Available at: https://www.investopedia.com/terms/b/big-data.asp

[Accessed 7 November 2020].

VPN, G. T., 2020. Trends.Google.com. [Online]

Available at: https://trends.google.com/trends/explore?date=today %205-y&q=VPN
[Accessed 27 October 2020].

WebRTCGlossary, 2017. WebRTCGlossary. [Online]

Available at: https://webrtcglossary.com/ice/

[Accessed 31 October 2020].

44

