
Secure Communication Platform
Functional Specification
27th November 2020

Bachelor Of Science (Honours)
Software Development

Liliana O’Sullivan
C00227188

Paul Barry
Project Supervisor

1

Table of Contents

1. Table of Figures ... 2

2. Introduction ... 3

3. Project Description ... 4

4. Users ... 8

5. FURPS+ .. 9

5.1 Functionality .. 9
5.1.1 Account Management ... 9
5.1.2 Conversation Capabilities .. 9

5.2 Usability .. 10

5.3 Reliability .. 10

5.4 Performance ... 10

5.5 Supportability ... 10

5.6 + .. 10
5.6.1 Security .. 11

2

1. Table of Figures
Figure 1 Use Case ... 4
Figure 2 Hierarchy Triangle ... 9
Figure 3 Overview ... 9
Figure 4 End-To-End Encryption .. 11

3

2. Introduction
This document will showcase the functional and non-functional requirements for the
development of this project. It will include diagrams to showcase or explain
concepts that where appropriate.

4

3. Project Description
This is a research project to develop a server that exposes an Application
Programming Interface (API) to a conversation-facilitating platform. The ultimate
goal is to enable developers to create their own clients that can tap into the API.
The platform sets out to ensure user’s conversations have technology-backed
security in place. The platform is attempting to provide an additional choice of a
security-oriented platform to end-users. The server nor a third party eavesdropping
on the conversation will have the capability of determining the conversation in
place.

The API server will follow and document using the OpenAPI standard as set by the
Linux Foundation. Any features provided by the platformed are chosen based on
the mass-reach it applies to users. The API functionalities can be loosely classified
into the use case shown in Figure 1.

Figure 1 Use Case

5

Use Case Login
Actors Client, Backend

Pre-conditions An account has been registered

Brief Description This use-case begins once a client requests to log in to an
existing account

Main Success Scenario

1. The client forwards credentials to log in to an
account

2. The backend verifies the existence of an account
with the provided credentials.

3. The backend logs the client in and responds with
success

Alternatives

2a. The credentials provided are not associated with an
account

2.1 An error is returned to the client
2.2 The client forwards new information
2.3 The backend checks the new credentials
2.4 The backend logs the client in, replies in
acknowledgement.

Post-conditions A client is logged into the system.

Use Case Register
Actors Client, Backend

Pre-conditions None

Brief Description This use-case begins once a client is launched and is
about to make its first request.

Main Success Scenario

4. The client forwards required information to register
to the backend

5. The backend checks the information, such as
ensuring an account does not currently exist.

6. The backend creates an account and responds to
the client

Alternatives

2a. The information entered is already tied to an account
2.1 An error is returned to the client
2.2 The client forwards new information
2.3 The backend checks the new credentials
2.4 It creates the account and replies with success

Post-conditions A newly created account exists on the database

6

Use Case Converse 1:1
Actors Client, Backend

Pre-conditions The client is logged in to an existing account

Brief Description This use-case begins once a client requests to converse
with an existing account.

Main Success Scenario

1. The client sends a request desiring to converse,
specifying a particular account

2. The backend verifies the request by ensuring the
client requesting to converse is logged in and
verifies the cryptographic integrity.

3. The backend forwards the desire to the client
requested.

Alternatives

2a. The clients request failed cryptographic integrity.
2.1 An error is returned to the client
2.2 The client forwards a new request
2.3 The backend verifies the request.
2.4 The backend upholds the request and returns a
success

Post-conditions None

Use Case Converse in a group
Actors Client, Backend

Pre-conditions The client is logged in to an existing account

Brief Description This use-case begins once a client requests to converse
with a group

Main Success Scenario

1. The client sends a request desiring to converse
with a request-included list of accounts

2. The backend verifies the request by ensuring the
user requesting to converse is logged in and
verifies the cryptographic integrity

3. The backend forwards the request to all the
specified accounts on the list

Alternatives

2a. The credentials provided are not associated with an
account

2.1 An error is returned to the client
2.2 The client forwards new information
2.3 The backend checks the new credentials
2.4 The backend logs the client in, replies in
acknowledgement.

7

Post-conditions None

8

4. Users
The project is explicitly targeted towards developers; however, the resulting
platform ultimately targets end-users. The technical side of the project, building the
API server and producing the appropriate documentation, is targeted towards
technically minded developers. The developers are primarily concerned with an
intuitive and well-documented API.

Documentation is essential for expressing expectations and behaviour to
developers without delving into source code to examine its inner workings.
Documentation dictates how a developer should interact with the API, with
expected responses from the server.

The end-user of the platform is not specifically targeting an individual end-user or a
specific use-case. The platform as a whole aims to provide generic tools to
converse that can accommodate multiple use-cases. The generic approach is taken
in an attempt to maximise user reach. The platform will differentiate itself through
the security-conscious design. While the platform aims to be accessible to most
users, even if the user is not technically savvy, the individual experience provided
will be created ultimately by the client used.

The platform is aimed to be intuitive and accessible. The APIs provided will be high-
level, aiming to provide abstractions to the cryptography and technical aspects
behind the interface.

9

5. FURPS+
FURPS is an acronym for Functionality, Usability, Reliability, Performance and
Supportability. The software in question is discussed with information related to
each caption. The ‘+’ is appended for any requirements that do not neatly fit into
the previously mentioned classifications.

5.1 Functionality
This refers to the main feature-set provided by the software. The following are
considered core functionality to the application.

The project-server aims to be the fundamental logic
on which client applications are built upon. The
end-user will not have direct contact with this
server, instead using a client to create the end-user
experience. This client can come in many forms, for
example, a mobile application running on an
Android or iOS device, a Desktop user interface on

a Linux operating
system or a web-
based client. A simplified hierarchy can be seen in
Figure 2.

Once a client ‘interfaces’ with the API, it should
enable users to connect and converse with each
other. A visual demonstration can be seen in Figure
3. A client is likely to implement many user-friendly
features that are not controllable by the server. The

API will be documented, specifically targeted at a technical audience, to aid in the
development of a client.

5.1.1 Account Management
The server must provide an interface capable of registering an account, logging in
and logging out.

5.1.2 Conversation Capabilities
The server must be capable of enabling conversations. This is one of the
fundamental purposes of the platform. A logged-in user should have the ability to
initiate a conversation with another user of the platform.

Figure 2 Hierarchy Triangle

Figure 3 Overview

10

5.2 Usability
Usability is about the user experience of the application. This generally is in the form
of the user interface, such as the aesthetics or responsiveness. Usability also
encapsulates any documentation or support resources made available.

The API will be constructed using the OpenAPI Specification. This is a specification
overseen by the OpenAPI Initiative, which is part of the Linux Foundation. The
specification is language-independent and attempts to define the structure of APIs
to ensure human understanding without the need to access the source code or
documentation behind it.

5.3 Reliability
Reliability refers to the stability and availability of the application. This can be
measured by multiple factors such as Failure Frequency or Mean Time Between
Failures.

The API will be using Transmission Control Protocol (TCP) for network connections.
TCP is more reliable, in relation to guarantees on deliverance, over the use of User
Datagram Protocol (UDP). This is due to the recipient checking the arrival of the
send information and sending a request for information that did not arrive.

5.4 Performance
This refers to the speed and scalability of the application. It is about the expected
response times of the software, the anticipated throughput and its resource
consumption.

• A code profiler will be applied in the development of the platform

5.5 Supportability
This classifies the maintainability, flexibility and compatibility of the application. This
can refer to an applications ability to incorporate multiple localisations, its ability to
operate on multiple platforms or its ability to be maintained in the long term. Due to
the developer-centric nature of the application and the general trend of
conversational platforms evolving, it is essential to ensure maintainability in this
project. The following targets have been set to be met:

• The API will be documented targeted towards a technical audience
• The code must be sufficiently commented
• The code must have a high degree of test coverage

5.6 +

11

The ‘+’ aims to capture any non-functional requirements that did not fit into the
previous sections. It can also be used to capture application-specific requirements.

5.6.1 Security
As security is the focus of this project, it has high requirements for security. It is
required that user data, as it flows from a user’s computer to its endpoint, should be
enciphered and accessible exclusively to the end-users. This includes the server
host, who should only have access to the cypher text. The conversation data should
be secure in transit and at rest. In-transit data is information that has not reached
the intended recipients. Data at rest is information that is stored by the server-host,
such as information in the database. This is showcased in Figure 4.

Figure 4 End-To-End Encryption

Each cryptographic algorithm implemented within the system will require a
meticulous evaluation and, finally, carefully concluded upon. A static analysis tool
must be run to ensure the following of programming best practices. Static analysis
tools aid in development by performing automated analysis on code to find bugs,
security vulnerabilities, improving performance and following programming
language best practices.

Configuration options will allow encrypted or clear-text conversations.

