
Command and Scripting Interpreter

What is a Command and Scripting Interpreter?
A command and scripting interpreter is an application that directly executes instructions written in a
programming or scripting language, without compiling them beforehand. [1]

Command Interpreters are also known as Shells, and you may be familiar with some from your studies
so far. These are:

Windows:
Command Prompt
PowerShell

Linux:
Bash
Bourne Shell (sh)

What is a Script?
A Script is a program that contains a series of commands that will be executed in sequence after the
program executes. A script does not need to be compiled before execution. Scripts are often used to
automate tedious and repetitive tasks.

Some common scripting languages that you may be familiar with:

JavaScript
Python
Bash
PowerShell

Command and Scripting Interpreter Exploitation
Adversaries may abuse command and script interpreters to execute commands, scripts, or binaries.
These interfaces and languages provide ways of interacting with computer systems and are a
common feature across many different platforms. [2]

According to the Red Canary 2022 Threat Detection Report, the exploitation of the Command and
Scripting Interpreter was ranked 1st, as the most exploited technique observed in 2021. Red Canary
observed this technique being exploited in 53.4% of organizations.



What MITRE ATTACK [3] framework technique ID is applied to Command and Scripting Interpreter
Exploitation?

The technique ID assigned to Command and Scripting Interpreter Exploitation is T1059

What type of tactic uses this technique?

Provide a name and a brief description of the Tactic that this technique falls under.

Execution

Execution consists of techniques that result in adversary-controlled code running on a
local or remote system. Techniques that run malicious code are often paired with
techniques from all other tactics to achieve broader goals, like exploring a network or
stealing data. For example, an adversary might use a remote access tool to run a
PowerShell script that does Remote System Discovery.

- MITRE ATTACK Framework: Execution [4]

Initial Access

Initial Access consists of techniques that use various entry vectors to gain their initial
foothold within a network. Techniques used to gain a foothold include targeted spear
phishing and exploiting weaknesses on public-facing web servers. Footholds gained
through initial access may allow for continued access, like valid accounts and use of
external remote services, or may be limited-use due to changing passwords.

- MITRE ATTACK Framework: Initial Access [5]

Lateral Movement

Lateral Movement consists of techniques that adversaries use to enter and control
remote systems on a network. Following through on their primary objective often
requires exploring the network to find their target and subsequently gaining access to
it. Reaching their objective often involves pivoting through multiple systems and
accounts to gain. Adversaries might install their own remote access tools to
accomplish Lateral Movement or use legitimate credentials with native network and
operating system tools, which may be stealthier.

- MITRE ATTACK Framework: Lateral Movement [6]

The Command and Scripting Interpreter technique is primarily used as part of the Execution tactic. A
script may be embedded in a Phishing email as part of the Initial Access tactic. It can also be used to
access services configured for remote access using SSH or RDP, exploiting the Lateral Movement
tactic Remote Services to perform remote Execution.



Command and Scripting Interpreter Techniques & Sub-Techniques

The Command and Scripting Interpreter technique has 8 sub-techniques. They are listed as follows:

T1059.001: PowerShell
T1059.002: AppleScript
T1059.003: Windows Command Shell
T1059.004: Unix Shell
T1059.005: Visual Basic
T1059.006: Python
T1059.007: JavaScript
T1059.008: Network Device CLI

Of the 8 sub-techniques listed, two of them made the top 10 list of sub-techniques exploited. The
sub-techniques were ranked 1st and 2nd respectively. They were:

T1059.001: PowerShell [7] (35% Organisations Affected)
T1059.003: Windows Command Shell [8] (28.1% Organisations Affected)

We will focus on learning about these techniques.

T1059.001: PowerShell

Why do malicious actors use PowerShell?

PowerShell is a cross-platform task automation solution made up of a command-line shell, a scripting
language, and a configuration management framework. PowerShell runs on Windows, Linux, and
macOS. [9]

PowerShell is included by default with Windows and it is widely used by system administrators to
automate tasks and to perform remote management tasks.

What can Malicious Actors use PowerShell for?

PowerShell is an extremely powerful command line tool and due to it being shipped by default with
Windows machines and it's high use by Administrators, it has become popular with malicious actors.

Malicious actors can use PowerShell to:

Execute Commands
Evade Detection
Obfuscate Malicious Activity
Spawn Additional Processes
Remotely Download and Execute Arbitrary Code and Binaries
Gather Information
Change System Configurations



Based on Red Canary's analysis of the commonalities between threats that leverage PowerShell, it was
found that the most common use of PowerShell is:

As part of a toolkit, such as Cobalt Strike.
Obfuscation, by using Base64 to encode malicious activity.
To download payloads via cmdlets, as part of the Ingress Tool Transfer technique.
To load and execute malicious DLLs.
To facilitate process injection.
To disable Windows Security Tools [10]

To decrypt malicious payloads.

Can you name any significant Groups that leverage PowerShell for malicious activity?

Groups are sets of related intrusion activity that are tracked by a common name in the
security community. Analysts track clusters of activities using various analytic
methodologies and terms such as threat groups, activity groups, threat actors,
intrusion sets, and campaigns. Some groups have multiple names associated with
similar activities due to various organizations tracking similar activities by different
names. Organizations' group definitions may partially overlap with groups designated
by other organizations and may disagree on specific activity.

- MITRE ATTACK Framework: Groups [11]

This technique has been leveraged by some large cybercrime organizations, state actors and in
significant breaches over the past number of years.

Please provide the groups name, a brief description of the group and the exploit used.

Group Description Exploit Used

APT32
APT32 is a suspected Vietnam-based threat
group that has been active since at least 2014

APT32 has used COM scriptlets to
download Cobalt Strike beacons

FIN7

FIN7 is a financially-motivated threat group
that has been active since 2013 primarily
targeting the U.S. retail, restaurant, and
hospitality sectors, often using point-of-sale
malware.

FIN7 has used a PowerShell script to
launch shellcode that retrieved an

additional payload.

GALLIUM
GALLIUM is a group that has been active since
at least 2012, primarily targeting high-profile
telecommunications networks.

GALLIUM has used PowerShell for
execution to assist in lateral

movement as well as for dumping
credentials stored on compromised

machines.

Zeus
Panda

Zeus Panda is a Trojan designed to steal
banking information and other sensitive
credentials for exfiltration.

Zeus Panda uses PowerShell to
download and execute the payload.



What can you do to mitigate against PowerShell exploitation?

Please research mitigations and provide the type and a short description of the mitigation techniques.

ID Mitigation Description

M1049 Antivirus/Antimalware
Anti-virus can be used to automatically quarantine suspicious

files.

M1045 Code Signing Where possible, only permit execution of signed scripts.

M1042
Disable or Remove
Feature or Program

Disable or remove any unnecessary or unused shells or
interpreters.

M1038 Execution Prevention Use application control where appropriate.

M1026
Privileged Account
Management

When PowerShell is necessary, restrict PowerShell execution
policy to administrators. Be aware that there are methods of

bypassing the PowerShell execution policy, depending on
environment configuration.

How can this type of attack be detected?

To combat PowerShell being used against you, actively monitoring for process starts and command
line activity will help detect threats.

Monitor for the creation of execution policies by admin or system accounts using the Registry or
the command line.
Monitor for encoding and obfuscation on the command line.
Monitor for PowerShell activity in environments where PowerShell is not expected.
Monitor for the execution of artifacts associated with PowerShell specific assemblies.

An example of one is by writing your own C# program, that references the
System.Management.Automation.dll and can use the the DLLs functions to execute
PowerShell code. [12]

Enable PowerShell logging.

ID Data Source Data Component

DS0017 Command Command Execution

DS0011 Module Module Load

DS0009 Process Process Creation

DS0012 Script Script Execution



Performing regular compromise assessments within an environment is also very beneficial to the
organization and can also help with detecting threats, both past and present.

Compromise assessments are high-level investigations where skilled teams utilize
advanced tools to dig more deeply into their environment to identify ongoing or past
attacker activity in addition to identifying existing weaknesses in controls and
practices.

- CrowdStrike [13]

These tests are usually performed by vulnerability scanners, and will assess the company's
infrastructure. The scans will usually incorporate searching for known Indicators of Compromise (IOC)
from recently investigated attacks.

An Indicator of Compromise (IOC) is a piece of digital forensics that suggests that an
endpoint or network may have been breached. Just as with physical evidence, these
digital clues help information security professionals identify malicious activity or
security threats, such as data breaches, insider threats or malware attacks.

- CrowdStrike [14]

Indicators of Compromise includes:

Files Hashes
IP Addresses
Sign in Activity from unexpected countries.
Large volumes of sign in requests.

Log Collection

Windows Security Event ID 1101: Antimalware-Scan-Interface (AMSI).
Windows Security Event ID 4104: Scriptblock logging.
Windows Security Event ID 400: PowerShell command-line logging.
Windows Security Event IDs 800 and 4103: Module loading and Add-Type logging.

T1059.003: Windows Command Shell

Why do malicious actors use Windows Command Shell?

The Windows Command Shell (Command Prompt, cmd.exe) was the first shell incorporated into the
Windows Operating System. It can used to automate account management tasks and system backups,
via batch (.bat) files. [15]

The Command Shell is widely available on any machine running windows, and this makes it attractive
to adversaries. The ability to run scripts is also a big factor in the decision use the Command Shell.
The Command Shell also as the ability to call on most executable files, and run them.



What can Malicious Actors use the Windows Command Shell for?

Due to the prevalence of the Windows Command Shell across Windows machines and it's versatility in
being able to control many aspects of the system, it becomes a very attractive tool for adversaries.

Adversaries may leverage the Windows Command Shell to deliver malicious payloads, as well as many
other activities.

Malicious actors can use the Windows Command Shell to:

Obfuscate Malicious Activity
Collect System Information
Modify Systems
Execute Binaries
Bypass Security Controls

As mentioned above, an adversary may use the Windows Command Shell to obfuscate their activity.
The goal of which is to delay the analysis, and bypass detection.

Some Obfuscation Techniques to be aware of:

Environment Variable Substrings
For Loops
Double Quotes
Caret Symbols
Parentheses
Commas
Semicolons
Random Variable Names

The Windows Command Shell also contains a built in command called type. This command allows the
user to display the contents of a file. [16] A user can redirect the output of this command using the
operators > and >>, thus avoiding using the copy command directly. [8-1]

Can you name any significant Groups that leverage Windows Command Shell for malicious
activity?

Groups are sets of related intrusion activity that are tracked by a common name in the
security community. Analysts track clusters of activities using various analytic
methodologies and terms such as threat groups, activity groups, threat actors,
intrusion sets, and campaigns. Some groups have multiple names associated with
similar activities due to various organizations tracking similar activities by different
names. Organizations' group definitions may partially overlap with groups designated
by other organizations and may disagree on specific activity.

- MITRE ATTACK Framework: Groups [11-1]

This technique has been leveraged by some large cybercrime organizations, state actors and in
significant breaches over the past number of years.



Please provide the groups name, a brief description of the group and the exploit used.

Group Description Exploit Used

Babuk
Babuk is a Ransomware-as-a-service (RaaS)
malware group that has been used since at
least 2021

Babuk has the ability to use the
command line to control execution

on compromised hosts.

Conti
Conti is a RaaS group that was first observed in
December 2019, and is responsible for the HSE
attack in 2021.

Conti can utilize command line
options to allow an attacker control

over how it scans and encrypts files.

Emotet
Emotet is a modular malware variant which is
primarily used as a downloader for other
malware variants such as TrickBot and IcedID.

Emotet has used cmd.exe to run a
PowerShell script.

Lazarus
Group

Lazarus Group is a North Korean state-
sponsored cyber threat group that has been
attributed to the Reconnaissance General
Bureau.

Lazarus Group uses cmd.exe to
execute commands on victims

What can you do to mitigate against Windows Command Shell exploitation?

Please research mitigations and provide the type and a short description of the mitigation techniques.

ID Mitigation Description

M1038 Execution Prevention Use application control where appropriate.

How can this type of attack be detected?

An analyst must always be aware of a user's role when they are investigating suspicious activity. As
such, an administrator using the Windows Command Shell to execute scripts might appear to align
with their role.

Monitor accounts for Windows Command Shell activity, where this activity is not expected.
Monitor for command line activity.

Command Line arguments may be obfuscated.
Monitor for Process Creation and unusual Parent-Process combinations.
Monitor for Command Line activity attempting to bypass security controls.
Monitor for task scheduling activity.

ID Data Source Data Component

DS0017 Command Command Execution

DS0009 Process Process Creation



Performing regular compromise assessments within an environment is also very beneficial to the
organization and can also help with detecting threats, both past and present.

Compromise assessments are high-level investigations where skilled teams utilize
advanced tools to dig more deeply into their environment to identify ongoing or past
attacker activity in addition to identifying existing weaknesses in controls and
practices.

- CrowdStrike [13-1]

These tests are usually performed by vulnerability scanners, and will assess the company's
infrastructure. The scans will usually incorporate searching for known Indicators of Compromise (IOC)
from recently investigated attacks.

An Indicator of Compromise (IOC) is a piece of digital forensics that suggests that an
endpoint or network may have been breached. Just as with physical evidence, these
digital clues help information security professionals identify malicious activity or
security threats, such as data breaches, insider threats or malware attacks.

- CrowdStrike [14-1]

Indicators of Compromise includes:

Files Hashes
IP Addresses
Sign in Activity from unexpected countries.
Large volumes of sign in requests.

Log Collection

Listed below are log events to track:

Windows Security Event ID 4688: Process Creation.
Sysmon Event ID 1: Process creation.
Sysmon Event ID 11: File create.



Command and Scripting Interpreter Exploitation
Demonstration
In this section, we will demonstrate some of the tactics that can be performed with WMI and then to
view the logs to get an idea for what you should look for.

To help with this section, please open the GitHub link for the Atomic Red Team atomics page for the
sub-techniques PowerShell and the Windows Command Interpreter

https://github.com/redcanaryco/atomic-red-
team/blob/master/atomics/T1059.001/T1059.001.md
https://github.com/redcanaryco/atomic-red-
team/blob/master/atomics/T1059.003/T1059.003.md

T1059.001 - PowerShell

From the Atomic Red Team Github for the technique T1059.001: PowerShell shows that there are 21
automatic tests built into the Atomic Red Team toolset.

It may not be possible to run all the tests, however we will run a couple so that you can view any
relevant log information.

Step 1: Open Client Machine

Open the Windows 10 machine connected to the Detection Lab configuration.
Open PowerShell.

Step 2: Confirm that Invoke-AtomicTest is Installed

Confirm that the Invoke-AtomicTest cmdlet is installed correctly. This command will install this
module.

Type A to confirm installing the Module.
If the module is already installed, you will not be prompted to accept.

Further Reading about the installation process:

https://github.com/redcanaryco/invoke-atomicredteam/wiki/Installing-Atomic-Red-Team

Install-Module -Name invoke-atomicredteam,powershell-yaml -Scope CurrentUser 


https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1059.001/T1059.001.md
https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1059.003/T1059.003.md
https://github.com/redcanaryco/invoke-atomicredteam/wiki/Installing-Atomic-Red-Team


Step 3: Check the Prerequisites for T1059.001

We need to confirm that all the prerequisites for the tests are available and installed correctly.

We can see that nearly half of the tests do not have the required software installed.

Step 4: Get the Prerequisites for T1059.001

Install the resources required to complete the relevant tests.

Step 5: Begin Testing

I will choose a select few tests to demonstrate the commands used to generate the logs. All the tests
can be executed at once, however I prefer to do it test-by-test.

Some tests are designed for Linux or Mac. Ensure that you are attempting to demonstrate the
Windows Tests.

Invoke-AtomicTest T1059.001 -CheckPrereqs 


Invoke-AtomicTest T1059.001 -GetPrereqs




Test #4 - Obfuscation Tests

This test covers the different methods of obfuscation that can be used with PowerShell. Upon a
successful execution, this should display 'SUCCESSFULLY EXECUTED POWERSHELL CODE FROM
REMOTE LOCATION'.

Show Test Details

Firstly, use the -ShowDetails switch to print the details of the specific test to the screen.

Execute Test

Next, we will run the test.

As you can see from the screenshot above, the test executed successfully.

Invoke-AtomicTest T1059.001 -TestNumbers 4 -ShowDetails


Invoke-AtomicTest T1059.001 -TestNumbers 4




The bit[.]ly/L3g1tCrad1e link resolves to a script containing the information to print to the
console.

As per the screenshot above, it advises to use Invoke-Mimikatz, however I was unable to
get this to work successfully.
The script is screenshot below.

The bit[.]ly/L3g1t link that was included in the test redirects to a PasteBin
(https://pastebin.com/wAqXiz8x) page containing a command:

Logs

Next, open up the Splunk - Search & Reporting instance and begin searching for the log data
surrounding the inputted commands.

Windows Security Event (400): index="wineventlog" EventCode=400

Write-Host SUCCESSFULLY EXECUTED POWERSHELL CODE FROM REMOTE LOCATION -ForegroundColor Green


https://pastebin.com/wAqXiz8x


Windows Security Event (4104): index="wineventlog" EventCode=4104

Test #8 - PowerShell XML Requests

This test covers a PowerShell method used to download and execute an XML from the internet. Upon
a successful execution of the test, this should display 'Download Cradle test success!'.

Show Test Details

Firstly, use the -ShowDetails switch to print the details of the specific test to the screen.

Invoke-AtomicTest T1059.001 -TestNumbers 8 -ShowDetails




Execute Test

Next, we will run the test.

As you can see from the screenshot above, the test executed successfully.
The link that was used to download the XML file was hosted on the Atomic Red Team Github.

Logs

Next, open up the Splunk - Search & Reporting instance and begin searching for the log data
surrounding the inputted commands.

Windows Security Event (800): index="wineventlog"
https://raw.githubusercontent.com/redcanaryco/atomic-red-

team/master/atomics/T1059.001/src/test.xml EventCode=800

Invoke-AtomicTest T1059.001 -TestNumbers 8




Windows Security Event (4103): index="wineventlog"
https://raw.githubusercontent.com/redcanaryco/atomic-red-

team/master/atomics/T1059.001/src/test.xml EventCode=4103

Test #11 - PowerShell Fileless Script Execution

Execution of a PowerShell payload from the Windows Registry similar to that seen in fileless malware
infections. Upon execution, open "C:\Windows\Temp" and verify that art-marker.txt is in the folder.

Show Test Details

Firstly, use the -ShowDetails switch to print the details of the specific test to the screen.



Execute Test

Next, we will run the test.

Logs

Next, open up the Splunk - Search & Reporting instance and begin searching for the log data
surrounding the inputted commands.

Windows Process Creation Event (4688): index="wineventlog"
ComputerName="win10.windomain.local" EventCode=4688

Process_Command_Line="\"C:\\Windows\\system32\\reg.exe\" add

HKEY_CURRENT_USER\\Software\\Classes\\AtomicRedTeam /v ART /t REG_SZ /d

U2V0LUNvbnRlbnQgLXBhdGggIiRlbnY6U3lzdGVtUm9vdC9UZW1wL2FydC1tYXJrZXIudHh0IiAtdmFsdWUgIkhlb

GxvIGZyb20gdGhlIEF0b21pYyBSZWQgVGVhbSI="

Invoke-AtomicTest T1059.001 -TestNumbers 11 -ShowDetails


Invoke-AtomicTest T1059.001 -TestNumbers 11




Sysmon Process Creation Event: index="sysmon" ComputerName="win10.windomain.local"
CommandLine="\"C:\\Windows\\system32\\reg.exe\" add

HKEY_CURRENT_USER\\Software\\Classes\\AtomicRedTeam /v ART /t REG_SZ /d

U2V0LUNvbnRlbnQgLXBhdGggIiRlbnY6U3lzdGVtUm9vdC9UZW1wL2FydC1tYXJrZXIudHh0IiAtdmFsdWUgIkhlb

GxvIGZyb20gdGhlIEF0b21pYyBSZWQgVGVhbSI="

Step 6: Clean Up

Some tests may change items within your environment.
Run command the following command to clean up any changes made to the system while
performing tests.



T1059.003 - Windows Command Shell

Step 1: Open Client Machine

Open the Windows 10 machine connected to the Detection Lab configuration.
Open PowerShell.

Step 2: Confirm that Invoke-AtomicTest is Installed

Confirm that the Invoke-AtomicTest cmdlet is installed correctly. This command will install this
module.

Type A to confirm installing the Module.
If the module is already installed, you will not be prompted to accept.

Further Reading about the installation process:

https://github.com/redcanaryco/invoke-atomicredteam/wiki/Installing-Atomic-Red-Team

Step 3: Check the Prerequisites for T1059.003

We need to confirm that all the prerequisites for the tests are available and installed correctly.

Invoke-AtomicTest T1059.001 -Cleanup


Install-Module -Name invoke-atomicredteam,powershell-yaml -Scope CurrentUser 


Invoke-AtomicTest T1059.003 -CheckPrereqs 


https://github.com/redcanaryco/invoke-atomicredteam/wiki/Installing-Atomic-Red-Team




Step 4: Get the Prerequisites for T1059.003

Install the resources required to complete the relevant tests.

Step 5: Begin Testing

I will choose a select few tests to demonstrate the commands used to generate the logs. All the tests
can be executed at once, however I prefer to do it test-by-test.

Some tests are designed for Linux or Mac. Ensure that you are attempting to demonstrate the
Windows Tests.

Test #2: Writes text to a file and displays it

Show Test Details

Firstly, use the -ShowDetails switch to print the details of the specific test to the screen.

Invoke-AtomicTest T1059.003 -GetPrereqs


Invoke-AtomicTest 1059.003 -TestNumbers 2 -ShowDetails




Execute Test

Next, we will run the test.

Logs

Next, open up the Splunk - Search & Reporting instance and begin searching for the log data
surrounding the inputted commands.

Windows Event Process Creation Event (4688): index="wineventlog" EventCode=4688
Process_Command_Line="\"cmd.exe\" /c \"echo \"Hello from the Windows Command Prompt!\" >

\"%TEMP%\\test.bin\" & type \"%TEMP%\\test.bin\"\""

Invoke-AtomicTest 1059.003 -TestNumbers 2




Sysmon Process Creation Event (1): index="sysmon" ComputerName="win10.windomain.local"
CommandLine="\"cmd.exe\" /c \"echo \"Hello from the Windows Command Prompt!\" >

\"%%TEMP%%\\test.bin\" & type \"%%TEMP%%\\test.bin\"\""

Step 6: Clean Up

Some tests may change items within your environment.
Run command the following command to clean up any changes made to the system while
performing tests.

Invoke-AtomicTest T1059.003 -Cleanup




References

1. https://www.picussecurity.com/resource/t1059-command-and-scripting-interpreter-of-the-
mitre-attck-framework↩︎

2. https://attack.mitre.org/techniques/T1059/↩︎
3. https://attack.mitre.org/↩︎
4. https://attack.mitre.org/tactics/TA0002/↩︎
5. https://attack.mitre.org/tactics/TA0001/↩︎
6. https://attack.mitre.org/tactics/TA0008/↩︎
7. https://redcanary.com/threat-detection-report/techniques/powershell/↩︎
8. https://redcanary.com/threat-detection-report/techniques/windows-command-shell/↩︎↩︎
9. https://docs.microsoft.com/en-us/powershell/scripting/overview?view=powershell-7.2↩︎

10. https://redcanary.com/blog/uncompromised-kaseya/↩︎
11. https://attack.mitre.org/groups/↩︎↩︎
12. https://www.netspi.com/blog/technical/adversary-simulation/evolution-of-offensive-powershell-

invocation/↩︎
13. https://www.crowdstrike.com/cybersecurity-101/compromise-assessments/↩︎↩︎
14. https://www.crowdstrike.com/cybersecurity-101/indicators-of-compromise/↩︎↩︎
15. https://docs.microsoft.com/en-us/windows-server/administration/windows-

commands/windows-commands↩︎
16. https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/type↩︎

https://www.picussecurity.com/resource/t1059-command-and-scripting-interpreter-of-the-mitre-attck-framework
https://attack.mitre.org/techniques/T1059/
https://attack.mitre.org/
https://attack.mitre.org/tactics/TA0002/
https://attack.mitre.org/tactics/TA0001/
https://attack.mitre.org/tactics/TA0008/
https://redcanary.com/threat-detection-report/techniques/powershell/
https://redcanary.com/threat-detection-report/techniques/windows-command-shell/
https://docs.microsoft.com/en-us/powershell/scripting/overview?view=powershell-7.2
https://redcanary.com/blog/uncompromised-kaseya/
https://attack.mitre.org/groups/
https://www.netspi.com/blog/technical/adversary-simulation/evolution-of-offensive-powershell-invocation/
https://www.crowdstrike.com/cybersecurity-101/compromise-assessments/
https://www.crowdstrike.com/cybersecurity-101/indicators-of-compromise/
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/windows-commands
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/type

