
Obfuscated Files or Information

What is Obfuscation?

Obfuscation is defined as the action of making something obscure, unclear, or unintelligible. [1] In
computing, obfuscation is used to create code or sets of instructions that are difficult for a human to
understand and therefore make the process of reverse engineering more difficult.

Malicious actors can employ such techniques in the hopes of avoiding detection or if they are
detected, to delay the security team from discovering what they are doing. It may take some time to
de-obfuscate code or commands and this extra time may help an attacker further their goals.

Obfuscated Files or Information Exploitation

According to the Red Canary 2022 Threat Detection Report [2], the technique of using Obfuscated
Files or Information was ranked 8th, as one of the most exploited techniques observed in 2021. Red
Canary observed this technique being used in 19.9% of organizations.

What MITRE ATTACK [3] framework technique ID is applied to Obfuscated Files or Information
Exploitation?

The technique ID assigned to Obfuscated Files or Information is T1027.

What type of Tactic uses this technique?

Provide a name and a brief description of the Tactic that this technique falls under.

Defense Evasion

Defense Evasion consists of techniques that adversaries use to avoid detection
throughout their compromise. Techniques used for defense evasion include
uninstalling/disabling security software or obfuscating/encrypting data and scripts.
Adversaries also leverage and abuse trusted processes to hide and masquerade their
malware. Other tactics’ techniques are cross-listed here when those techniques
include the added benefit of subverting defenses.

- MITRE ATTACK Framework: Defense Evasion [4]

Execution

Execution consists of techniques that result in adversary-controlled code running on a
local or remote system. Techniques that run malicious code are often paired with
techniques from all other tactics to achieve broader goals, like exploring a network or
stealing data. For example, an adversary might use a remote access tool to run a
PowerShell script that does Remote System Discovery.

- MITRE ATTACK Framework: Execution [5]

Initial Access

Initial Access consists of techniques that use various entry vectors to gain their initial
foothold within a network. Techniques used to gain a foothold include targeted spear
phishing and exploiting weaknesses on public-facing web servers. Footholds gained
through initial access may allow for continued access, like valid accounts and use of
external remote services, or may be limited-use due to changing passwords.

- MITRE ATTACK Framework: Initial Access [6]

Obfuscation is primarily used as part of the the Defense Evasion tactic. An adversary may encode
commands to avoid detection. They may also use forms of Obfuscation to hide malicious code during
the Initial Access stage of an attack, an example would be the deployment of malware via a 'Supply
Chain Attack'.

Obfuscated Files or Information Techniques & Sub-Techniques

The Obfuscated Files or Information technique has 6 sub-techniques. They are listed as follows:

T1027.001: Binary Padding
T1027.002: Software Packing
T1027.003: Steganography
T1027.004: Compile After Delivery
T1027.005: Indicator Removal from Tools
T1027.006: HTML Smuggling

Due to the complexity of some of the techniques, we will focus on learning about Obfuscation and
some basic Obfuscation techniques.

Why do malicious actors use Obfuscated Files or Information?

A malicious actor will employ Obfuscation techniques in order to evade detection by security tools and
analysts. Obfuscation is also regularly used within an enterprise environment, so the use of
Obfuscation may blend in with normal business activity. [7]

What can Malicious Actors use Obfuscated Files or Information for?

Malicious actors may employ many Obfuscation techniques during an attack, from the use of:

Encryption to prevent their malicious code from being detected.
Compression to hide a files true size.
Encoding to hide plaintext instructions.

A common area where Obfuscation techniques may be visible is with command-line logging for
PowerShell or Command Prompt. According to Red Canary [7-1] , some of the most common
techniques visible at the command-line are:

Base64 Encoding

Base64 is a group of similar binary-to-text encoding schemes that represent binary
data in an ASCII string format by translating it into a radix-64 representation.

- MDN Web Docs [8]

Base64 encoding was the most common form of obfuscation detected in 2021 by Red Canary. It is
used most often in conjunction with the T1059.001: PowerShell technique to obfuscate commands.

Plaintext: Institute of Technology, Carlow

Base64: SW5zdGl0dXRlIG9mIFRlY2hub2xvZ3ksIENhcmxvdw==

String Concatenation

Concatenation is the operation of joining two strings together. It is also known as
string concatenation.

- Techopedia [9]

You may be familiar with the term Concatenation from your programming modules and these
techniques are employed to avoid detection, and to combine a series of Strings into one command.

Some common types that have been observed are:

The + operator combining string values.
The -join operator combining characters, strings, bytes, and other elements.
PowerShell has access to .NET methods and it can use the [System.String]::Join() method to
combine characters.
String interpolation enables another form of evasion by allowing adversaries to set values such
that u\ can equal util.exe, thereby allowing cert%u% to execute certutil.exe

Substrings

A string contained within a larger string; a portion of a string that is itself a string.

- Lexico [10]

This form of Obfuscation is the 2nd most common form detected by Red Canary in 2021.

Their example demonstrates how an adversary may avoid detection and execute a command using
Substrings.

Take the following String:

The environmental variable public refers to:

So, to break it down, we are to concatenate the 13th character, with the 5th character and the
character 'x'.

This returns iex, shorthand for the PowerShell cmdlet called Invoke-Expression.

The Invoke-Expression cmdlet evaluates or runs a specified string as a command and
returns the results of the expression or command. Without Invoke-Expression, a string
submitted at the command line is returned (echoed) unchanged.

- Microsoft PowerShell Documentation [11]

Escape Characters (Escape Sequences)

Escape sequences represent non-printable and special characters in character and
literal strings. As such, they allow users to communicate with a display device or
printer by sending non-graphical control characters to specify actions like question
marks and carriage returns.

- Techopedia [12]

The command shell of an Operating System will have escape characters built in for when a user may
want to pass the character to the command shell, and not have it interpreted.

$ENV:pubLic[13]+$env:PublIc[5]+’x’

C:\Users\Public

PowerShell and the Windows Command Shell can escape characters with the following characters:

Backtick (`)
Backslash (\)
Caret (^)

A malicious actor may escape characters in order to avoid detection on signature matches for Strings.

Can you name any significant Groups that leverage Obfuscated Files or Information for malicious
activity?

Groups are sets of related intrusion activity that are tracked by a common name in the
security community. Analysts track clusters of activities using various analytic
methodologies and terms such as threat groups, activity groups, threat actors,
intrusion sets, and campaigns. Some groups have multiple names associated with
similar activities due to various organizations tracking similar activities by different
names. Organizations' group definitions may partially overlap with groups designated
by other organizations and may disagree on specific activity.

- MITRE ATTACK Framework: Groups [13]

This technique has been leveraged by some large cybercrime organizations, state actors and in
significant breaches over the past number of years.

Please provide the groups name, a brief description of the group and the exploit used.

Group Description Exploit Used

APT 37
APT37 is a North Korean state-sponsored
cyber espionage group that has been active
since at least 2012.

APT37 obfuscates strings and
payloads.

Cobalt
Group

Cobalt Group is a financially motivated
threat group that has primarily targeted
financial institutions since at least 2016.

Cobalt Group obfuscated several
scriptlets and code used on the

victim’s machine, including through
use of XOR and RC4.

Leviathan

Leviathan is a Chinese state-sponsored
cyber espionage group that has been
attributed to the Ministry of State Security's
(MSS) Hainan State Security Department
and an affiliated front company.

Leviathan has obfuscated code using
base64 and gzip compression.

QakBot
QakBot is a modular banking trojan that has
been used primarily by financially-motivated
actors since at least 2007.

QakBot can use obfuscated and
encoded scripts; it has also hidden
code within Excel spreadsheets by
turning the font color to white and

splitting it across multiple cells.

What can you do to mitigate against Obfuscated Files or Information exploitation?

Please research mitigations and provide the type and a short description of the mitigation techniques.

ID Mitigation Description

M1049 Antivirus/Antimalware
Consider utilizing the Antimalware Scan Interface (AMSI) on

Windows 10 to analyze commands after being
processed/interpreted.

M1040
Behavior Prevention
on Endpoint

On Windows 10, enable Attack Surface Reduction (ASR) rules to
prevent execution of potentially obfuscated scripts.

How can this type of attack be detected?

Detecting Obfuscation can be a difficult task due to the large number of ways that a file or information
can be obfuscated.

Monitor command-line arguments that have suspicious syntax, such as the use of many escape
characters.
Using an IDS and email filtering to identify compressed and encrypted files.
Detonate attachments in a sandbox environment, such as CrowdStrike to analyse the file.
Monitor for the creation of files on a system, an attacker may create obfuscated files.

ID Data Source Data Component

DS0017 Command Command Execution

DS0022 File File Creation

File Metadata

DS0009 Process Process Creation

Performing regular compromise assessments within an environment is also very beneficial to the
organization and can also help with detecting threats, both past and present.

Compromise assessments are high-level investigations where skilled teams utilize
advanced tools to dig more deeply into their environment to identify ongoing or past
attacker activity in addition to identifying existing weaknesses in controls and
practices.

- CrowdStrike [14]

These tests are usually performed by vulnerability scanners, and will assess the company's
infrastructure. The scans will usually incorporate searching for known Indicators of Compromise (IOC)
from recently investigated attacks.

An Indicator of Compromise (IOC) is a piece of digital forensics that suggests that an
endpoint or network may have been breached. Just as with physical evidence, these
digital clues help information security professionals identify malicious activity or
security threats, such as data breaches, insider threats or malware attacks.

- CrowdStrike [15]

Indicators of Compromise includes:

Files Hashes
IP Addresses
Sign in Activity from unexpected countries.
Large volumes of sign in requests.

Log Collection

Listed below are log events to track:

Windows Security Event ID 4688: Process creation
Sysmon Event ID 1: Process creation
Windows Security Event ID 1101 Antimalware-Scan-Interface (AMSI)

Obfuscated Files or Information Demonstration
In this section, we will demonstrate some of the techniques that can be performed with Obfuscation
and then to view the logs to get an idea for what you should look for.

To help with this section, please open the GitHub link for the Atomic Red Team atomics page for the
Obfuscated Files or Information.

https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1027/T1027.md

T1027

From the Atomic Red Team Github for the technique T1027: Obfuscated Files or Information shows
that there are 8 automatic tests built into the Atomic Red Team toolset.

It may not be possible to run all the tests, however we will run a couple so that you can view any
relevant log information.

Step 1: Open Client Machine

Open the Windows 10 machine connected to the Detection Lab configuration.
Open PowerShell

Step 2: Confirm that Invoke-AtomicTest is Installed

Confirm that the Invoke-AtomicTest cmdlet is installed correctly. This command will install this
module.

Type A to confirm installing the Module.
If the module is already installed, you will not be prompted to accept.

Further Reading about the installation process:

https://github.com/redcanaryco/invoke-atomicredteam/wiki/Installing-Atomic-Red-Team

Step 3: Check the Prerequisites for T1027

We need to confirm that all the prerequisites for the tests are available and installed correctly.

Install-Module -Name invoke-atomicredteam,powershell-yaml -Scope CurrentUser

Invoke-AtomicTest T1027 -CheckPrereqs

https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1027/T1027.md
https://github.com/redcanaryco/invoke-atomicredteam/wiki/Installing-Atomic-Red-Team

As we can see from the screenshot below, only one test does not have the required resources to
complete.

Step 4: Get the Prerequisites for T1027

Install the resources required to complete the relevant tests.

Step 5: Begin Testing

I will choose a select few tests to demonstrate the commands used to generate the logs. All the tests
can be executed at once, however I prefer to do it test-by-test.

Some tests are designed for Linux or Mac. Ensure that you are attempting to demonstrate the
Windows Tests.

Test #2 - Execute base64-encoded PowerShell

This test shows how code may be encoded, in the hopes of avoiding detection. The code is then
executed. Successful execution of this test should display 'Hey, Atomic!'.

Invoke-AtomicTest T1027 -GetPrereqs

Show Test Details

Firstly, use the -ShowDetails switch to print the details of the specific test to the screen.

Execute Test

Next, we will run the test.

We can see from the testing, and the screenshot above, that testing was completed successfully.

We observe a base64 encoded string:
VwByAGkAdABlAC0ASABvAHMAdAAgACIASABlAHkALAAgAEEAdABvAG0AaQBjACEAIgA=

Invoke-AtomicTest T1027 -TestNumbers 2 -ShowDetails

Invoke-AtomicTest T1027 -TestNumbers 2

When decoded using CyberChef: W.r.i.t.e.-.H.o.s.t. .".H.e.y.,. .A.t.o.m.i.c.!.".
The next line prints: Hey, Atomic!

The last line of the test calls the PowerShell executable, and is inputting the encoded
message as a parameter.
The Encoded message instructs PowerShell to print Hey, Atomic!.

Logs

Next, open up the Splunk - Search & Reporting instance and begin searching for the log data
surrounding the inputted commands.

Windows Event Process Creation Event (4688): index="wineventlog"
process_command_line="\"C:\\Windows\\System32\\WindowsPowerShell\\v1.0\\powershell.exe\"

-EncodedCommand VwByAGkAdABlAC0ASABvAHMAdAAgACIASABlAHkALAAgAEEAdABvAG0AaQBjACEAIgA="

Sysmon Process Creation Event: index="sysmon"
CommandLine="\"C:\\Windows\\System32\\WindowsPowerShell\\v1.0\\powershell.exe\" -

EncodedCommand VwByAGkAdABlAC0ASABvAHMAdAAgACIASABlAHkALAAgAEEAdABvAG0AaQBjACEAIgA="

What information do you think may be relevant to determine what occurred on the device?

Use the fields on the left of the Splunk Search to help filter the search results.
Some of the relevant fields will be as follows:

Host
Command Line
Process Name
Parent Process
Process Paths
IP Addresses
File Hash

Test #4 - Execution from Compressed File

The purpose of this test is to demonstrate how an adversary may run an executable from a
compressed folder. The test itself should launch calc.exe.

Use the -ShowDetails switch to print the details of the specific test to the screen.

Invoke-AtomicTest T1027 -TestNumbers 4 -ShowDetails

Run the test

Based on the screenshot above, the test ran successfully.
Microsoft's Calculator program was launched successfully.

Next, open up the Splunk - Search & Reporting instance and begin searching for the log data
surrounding the inputted commands.

Windows Event Process Creation Event (4688): index="wineventlog"
Creator_Process_Name="C:\\Users\\vagrant\\AppData\\Local\\Temp\\temp_T1027.zip\\T1027.exe

"

Invoke-AtomicTest T1027 -TestNumbers 4

Sysmon Process Creation Event: index=sysmon host="win10.windomain.local"
CommandLine="\"cmd.exe\" /c \"\"%%temp%%\\temp_T1027.zip\\T1027.exe\"\""

What information do you think may be relevant to determine what occurred on the device?

Use the fields on the left of the Splunk Search to help filter the search results.
Some of the relevant fields will be as follows:

Host
Command Line
Process Name
Parent Process
Process Paths
IP Addresses
File Hash

Step 6: Clean Up

Some tests may change items within your environment.
Run command the following command to clean up any changes made to the system while
performing tests.

References

1. https://www.lexico.com/definition/obfuscate↩︎
2. https://resource.redcanary.com/rs/003-YRU-

314/images/2022_ThreatDetectionReport_RedCanary.pdf↩︎
3. https://attack.mitre.org/↩︎
4. https://attack.mitre.org/tactics/TA0005/↩︎
5. https://attack.mitre.org/tactics/TA0002/↩︎
6. https://attack.mitre.org/tactics/TA0001/↩︎
7. https://redcanary.com/threat-detection-report/techniques/obfuscated-files-information/↩︎↩︎
8. https://developer.mozilla.org/en-US/docs/Glossary/Base64↩︎
9. https://www.techopedia.com/definition/3470/concatenation-programming↩︎

Invoke-AtomicTest T1027 -Cleanup

https://www.lexico.com/definition/obfuscate
https://resource.redcanary.com/rs/003-YRU-314/images/2022_ThreatDetectionReport_RedCanary.pdf
https://attack.mitre.org/
https://attack.mitre.org/tactics/TA0005/
https://attack.mitre.org/tactics/TA0002/
https://attack.mitre.org/tactics/TA0001/
https://redcanary.com/threat-detection-report/techniques/obfuscated-files-information/
https://developer.mozilla.org/en-US/docs/Glossary/Base64
https://www.techopedia.com/definition/3470/concatenation-programming

10. https://www.lexico.com/definition/substring↩︎
11. https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/invoke-

expression?view=powershell-7.2↩︎
12. https://www.techopedia.com/definition/822/escape-sequence-c↩︎
13. https://attack.mitre.org/groups/↩︎
14. https://www.crowdstrike.com/cybersecurity-101/compromise-assessments/↩︎
15. https://www.crowdstrike.com/cybersecurity-101/indicators-of-compromise/↩︎

https://www.lexico.com/definition/substring
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/invoke-expression?view=powershell-7.2
https://www.techopedia.com/definition/822/escape-sequence-c
https://attack.mitre.org/groups/
https://www.crowdstrike.com/cybersecurity-101/compromise-assessments/
https://www.crowdstrike.com/cybersecurity-101/indicators-of-compromise/

