Design Document

Balance Health

Name : Diarmuid Brennan
Student No : C00133947
Supervisor : Joseph Kehoe

Page | O

Abstract

This document will describe the design manual for the Balance Health project. The project was
designed to allow medical personnel to analyse and monitor a patient’s performance while carrying
out balance activities set by the medical personal which follow the 4-Stage-Balance test report.

The medical personnel will be able to monitor and analyse a patient’s activities from the web
application. The patient will retrieve the activities to their mobile device and carry out the activities
while wearing the Movesense sensor device. The gathered sensor data will be sent to the mobile
application and uploaded to the database for analysis.

This document will discuss the project architecture and technologies, the class and sequence diagrams
used as well as providing wireframes to demonstrate the Ul for the applications.

Page | 1

Table of Contents

F o - [ot AT OO PUPPTP PP 1
TADIE Of FIGUIES vttt s 4
TadgeTe [Vl o] o B URU T TP PP P PP PPPPPPPP 5
FAN 4ol o 11 = Tol {0 o IO OO P PP PP PPUOPPPP 6
BLIE=T0L 2 LT] 1o =13 7
MOVESENSE SENSOT DEVICE ..o e e e e 7
Mobile APPIICAtioN ..o 8
WED @PPIICALION Leuviiiiiiiiiiitit s 8
=] oL 1Y T PSPPSR PPU PPN 9
Database SCNEMAeiiiiiiee et e e e e e 10
WeEb APPHCatioN. ... 12
USEE INEEITACE ettt et e s st e e st e e s b e e s e e e s anreeeenan 12
[0} =41 o TP PRPUPP PR PPPPRRTPPPRE 12
=T = d] =] OO UUPP PR PPPPPRRTPPR 13
Create Patient. ... 14
VIEW Pati@NTS...ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiit ittt a e e b s s b s b s s s s bbb b e bbb s bbb bbb aaaaaaaaaa 15
CrEATE ACTIVITY toruiiiiiiie et e et e e e e e e et e e et e e aaa e e et e e eeaaaes 16
VIEW ACHIVITIES .oeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii e a s b s s s b b s s b s s s s s basasaaassaaaaaaae 17
VIiEW ACHIVILY PeIrfOrMANCE....ciiiiiiiiiiiiiiiiiieeieeeeeeeeeee et eeeeeeeeeeeeaeeeeaaaeseesraeasesesssessssasssssssssssssnsnnnres 18
MODIlE APPIICATION ..uueiiiiiiiiiiiti s 20
(O F= T3 DT V= =Y o 20

N =To (=T (o=l DT Y= - [KO PP PP 21
[0 =1 o PSPPSR PPPPRPPR 21

[0 ={o T SRR 21
0= =4 1] (= ST PPPRR 22
CONNECT .o 22
DY o0 T o 23
RETFIEVE ACTIVITIES oo s 23
PEITOIM ACHIVITY . ..uuueuiiiiiiiii e nnnnnn 24
UPIOAA RESUILS. . .uueuuiiiiiiiiiiiiiiiii e nnnnnnnnnnn 24
RV o o = TSN 25
ULy T o [01 =T o - Vol TP P PP PP OPPPPPOPTPPRN 26
[0 = g T ol = =Y o N 26
Y=o =] Y ol 1] o N 27
IMIQIN SCIEEBN ...t e 28

ACLIVILY DETAIIS SCIEEN....eiiiiiiiiiiiiiiiiteeee ettt e e ee e et e e et eeeeeeeeeaeeeeeeeeeeaeeeeeeeesseseennsnnnnes 29

ACHIVITY DESCIIPLION ..ttt e e e e e ettt aa e e e e e eeeeesaaeeeeeeeaaesnnnn 30
PErform ACHIVITY SCIEEN....uuueieiitiit s 31
VIBW PrOSIESS SCIEEN ...uiieiiieieiiiiiee e e ettt e e e ettt eee e e e e e ettt aa e e s e eeeeaaaaasseeeeeaeassaaaseeeeenensnnnn 32
23] o] [0 = =T o] 01V 33

Page | 3

Table of Figures

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 24
Figure 25
Figure 26
Figure 27

Project ArchiteCture. ..o 6
Movesense ArChiteCtUrEcooeeeei e, 7
o4 1 oI 1= OO P PP PP R PPPPPPIRt 12
Y1 (o gl o (PP PPPR S PPPPPPIRt 13
Create PatieNt DA cuuuue it e et e e e e e e e s 14
VIEW Pati@Nts PAgE ..o iiiiiiiiiiiii ettt e e ettt e e e e e e e e b e e aaaes 15
CrEate ACHIVITY PAB . uuuuee ittt ettt ettt s e s e e et et et ss e e s e e e eeaaaraaeseeeeeeeeannanees 16
VIEW ACTIVITIES PABE .. i iiiiiiiiiiii ettt s s e e et e e e s s e s e e eaeaaaaaneseeaaaes 17
View Activity Performance pageccccveviiiiiii 18
Login sequENCe diagram ..., 21
Logout seqUENCE diagram....ccccc i 21
Register SEQUENCE diagram......uuuiiiiiiiieiiiieieieeeeeeeeteeeeeereereereeeareeesrraersearesrereererarrersrrarranees 22
Connect to Movesense device sequence diagram........ccccceeeeeeiiiiiiieeeee, 22
Disconnect from Movesense device sequence diagrameeeeevveeeeereeeerereeseeememmennn 23
Retrieve patients activities from Firestore sequence diagramccvevvvvvevvvvvvnveevennnnnnns 23
Perform activity SeqUEeNCe diagram..........uuuiiieiiiiiiiiiieiiiieeieeeeereerererererrerrrrree———————————.. 24
Upload activity results to Firestore sequence diagrameeevevevvevereeeeeeeeeeeeeeenennnnnnn. 24
View activity progress sequence diagramcccceeiiiiiii 25
oY =T g I Yol £ 1= o TP OPPPRR PPN 26
=T I =] R ol £ 1= o [OO PP 27
Y T I =T= o 1RO PPTPPPR 28
Activity Details SCreeN.....ccci i 29
Activity Details SCreeN.....ccci i 30
Perform ACHIVITY SCIEENevviiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeesesssrsssrssssssssrssesrarsarssssrranres 31
VW PrOSIESS SCIEEN .. iiiitiiieiiiie et eeiiie ettt e e ettt s eeeatseetereaseeeataseseeasseeaennssereesnsseresnnseenens 32

Page | 4

Introduction

Pressures are continuously mounting on our healthcare system. A growing aging population will
continue to add more stress to an already overwhelmed system. The Balance Health project was
designed to create a solution that would allow medical staff to monitor a patient’s balance
performance remotely from a web application removing the need for many face-to-face interactions.
The application will be used to aid in monitoring a patient’s balance performance which can be used
to determine early diagnosis into any deterioration in the patient’s balance. This can then be used as
a preventive measure in conditions such as risk of fall or other neurological issues for the patient.

The project consists of a web application, a mobile application, a cloud database and a Movesense
sensor device. The medical personal can use the web application to track a patient’s balance
performance. The patient will then carry out the activities set from the Balance Health mobile
application.

This document will discuss how the application is to be designed and used. It will describe the systems
hardware and software architecture, contain class diagrams and sequence diagram to demonstrate
the structure and interactions, as well as wireframes to illustrate the user interface for the
applications.

Page | 5

Architecture

The technologies used in the development of the Balance Health project include a web application, a
mobile application, a cloud database and a Movesense sensor device (Figure 1). Activities will be set
by medical personnel for a patient on the web application and stored to the cloud database.

The patient will retrieve the activities from the database to their mobile device. While wearing the
Movesense sensor device, the patient will perform the activities set and the application will retrieve
the sensor data from the Movesense device. Once an activity has been completed the data is stored
to the database from where the medical personal can retrieve the results and analyse the patient’s
performance.

Retrieve Upload Results Set patient
Exercise exercise

Retrieve patients
results

Request
sensor data

N\ e

MOVESENSE

)

Sensor
response

Figure 1 Project Architecture

Page | 6

Technologies

Movesense Sensor Device

The Movesense device is a small device consisting of several sensors. The sensors contained within
the Movesense device include a 9-axis motion sensor, consisting of Accelerometer, Gyroscope and
Magnetometer, a Maxim ECG Analog Frontend, which can measure ECG, heartrate and RR-intervals
and a temperature measurement sensor. Data gathered through the sensors can be accessed over
Bluetooth Low Energy (BLE) from an application installed on a mobile device. The Movesense device
architecture (Figure 2) contains an inbuilt custom-made API service called Whiteboard and BLE
services which are used to handle any requests and responses to and from the device.

Your own
backend

YOUR OWN MOBILE
APPLICATION

WHEN USING WHITEBOARD
REST API
(POST, GET, PUT, DELETE)

w
a.
S
2
S
£
(]

YOUR OWN
WHITEBOARD CLIENT(S)

MOVESENSE
DEVICE SERVICE

LIBRARY CusTOM
GATT CLIENT
WHITEBOARD |OR cusTom WHITEBOARD (aMl BLE devices,
GATT SERVICE
e.g. Linux)

BLE WIRELESS BLE WIRELESS
COMMUNICATION v COMMUNICATION

Movesense sensor Ul / App / Gateway

HEART RATE
1-WIRE EXT BUS
LOGGER / LOGBOOK
THERMOMETER
LED
YOUR OWN
SERVICES

o
&
=
&
=
S
o=
s
u
=
S
=

Figure 2 Movesense Architecture

The Whiteboard APl provides the communication framework which allows for symmetric
communication between the device and a connected mobile application. The Movesense platform
provides the functionality for requesting data from the device allowing the developer the freedom to
focus on developing the mobile application.

The patient will access the activities set by the medical personal from their mobile device. When an
activity has been selected the patient will carry out the activity while wearing the Movesense device.
Sensor data will be transmitted from the sensor device to the mobile application for the duration of
the activity. On completion the mobile application will disconnect from requesting data from the
device.

Page | 7

Mobile Application

The mobile application will be developed using the Java programming language for Android devices
using Android Studio. Android studio is the official IDE for the Android operating system and is “the
primary IDE for native Android application development” (Wikipedia, 2021). It provides the functions
and services that will allow to create the mobile application.

To communicate with the sensor device, the Movesense platform provides the Movesense Device
Service (MDS) library. The MDS library contains the components and interfaces needed to
communicate with the sensor device over the Whiteboard communication framework. The MDS
library allows the developer to create a Mds object which contains methods for connecting to and
communicating with the sensor. Sensor data can be gathered from the sensor using the API request
calls provided.

To connect to the device, the mobile application will also require a library that will provide the
functionality to search for and connect with the device over BLE. This can be done using RxAndriodBle.
RxAndriodBle is a powerful library that provides the functionality for scanning for nearby Bluetooth
enabled and connecting to the device.

Once connected to the sensor device, the mobile application can subscribe to and request data from
the sensor using the MDS library. The data can then be displayed on the device and stored to the cloud
platform. Android Studio contains a Firebase Assistant which allows the developer to register their
android application with a Firebase project. This adds the necessary Firebase files, plugins and
dependencies required for the application to connect to the Firebase database.

A patient will create an account on the mobile application and the application retrieve activities set
by the medical personal from the Firebase database. The activities will be displayed on the patients
mobile, and the patient will carry out the activities while wearing the Movesense device. The data
gathered from the device during the activity will be displayed on the device and the results will be
stored to the database upon completion. The patient will also be able to view their progress for each
activity on the application.

Web application

The web application will be developed using Python and the Flask web framework. Flask is a
“lightweight Python web framework that provides useful tools and features that make creating web
applications in Python easier” (DigitalOcean, 2021). Flask is a flexible and extensible framework
containing an in-built server which allows developers to create web applications quickly and easily.

Flask in-built web server can handle incoming HTTP web requests and provide a response to the client.
Flask uses the Jinja template engine to dynamically build HTML web pages using Python concepts. Jinja
“is a Python template engine used to create HTML, XML or other markup formats that are returned to
the user via an HTTP response” (Full Stack Python, 2021). Jinja templates contains variables that act
as placeholders which can then store dynamic data rendered to the template from the python code.
Jinja allows the developer to apply python programming logic in the templates.

Page | 8

https://www.fullstackpython.com/template-engines.html

A medical personal will be able to create an account on the web application. The web application will
contain functionality for performing CRUD operations for a patient and set activities for the patients
to carry out. The web application will be connected to the Firebase database using the Pyrebase library
which allows for the web application to connect and communicate with the database.

Once activities have been set for a patient to carry out, the patient will download the activities to their
mobile device, perform the activity and the results from the activity are stored to the database. The
medical personal will be able to then retrieve the data from the database and monitor and analyse
the patient’s performance, setting new activities as the patient’s performance improves or
deteriorates.

Firebase

The cloud backend used for this project will be Firebase. Firebase is a Backend-as-a-service (BaaS)
platform developed by Google. It provides the platform from which mobile and web application
developers can link their applications to a backend cloud storage platform where data can be pulled
directly form the cloud with no server involvement.

Firebase allows the developer to set up a project on the Firebase platform and register Apple, Android,
or web applications with the project. Once an application has been registered, Firebase provides
Firebase SDKs that allows access to Firebase products. Firebase products include, Cloud Firestore and
Realtime database, Analytics, Performance monitoring, and Remote Config.

For this project it was decided to use the Cloud Firestore database. “Cloud Firestore is a flexible,
scalable database for mobile, web, and server development from Firebase and Google Cloud”
(Firebase, 2021). Firestore is a NoSQL cloud database which can be accessed directly from a mobile or
web application using native SDKs. Firestore provides a flexible, scalable, and efficient method for
storing and accessing the data including in-built security using Firebase Authentication.

Firestore allows you to store data in documents that contain key value mappings. Documents can
store many different datatypes including strings, numbers, Booleans, maps, arrays, or timestamps.
Documents are then stored in collections which act as containers for the documents. Documents can
also store subcollections within to store further data and each of the collections, documents, and
subcollections can be then queried individually for more efficient and flexible requests.

Page | 9

Database Schema

The database schema will contain the collections and documents needed to store, access, and
manipulate the data required for the both the web and mobile applications. The schema for the
applications is demonstrated below.

patient
- User_ID
o firstname
o lastname
o emalil
o userlD

- A patient will be able to create an account on the mobile application.

medical_staff

- User_ID
o firstname
o lastname
o emalil
o userlD

- Medical personnel will be able to create an account on the web application.

patients

- medical_staff_ID
o patient_ID
= firstname
= |astname
= age
= emalil
= condition

- Medical personnel will be able to create a patient and add their medical information.

Page | 10

activities

- activity_ID
O hame
o description
o time_limit

- Medical personnel will be able to set activities for a patient to carry out. The patient will be
able to retrieve the activities from the database to their mobile application.

patient_scores

- patient_ID
o score_id
= activity
e [accelerometerData]
e Avg value
e Max_value
e Min_value
e Date_set
e activityNmae
e completed

- A patient will be able to carry out activities and store their balance data results for each

activity. The medical personal will be able to retrieve the results from the database to monitor
and analyse the patient’s progress.

Page | 11

Web Application

User Interface

Login

Login

Email

Password -

Don't have an account?

Figure 3 Login page

Medical personnel will be able to log on to the web application. The user’s details will be stored using
the Firebase Authentication procedure.

Login command

auth.sign_in_with_email_and_password(user_details["email"], user_details["password"]);

Page | 12

Register

Register

First Name :
Last Name : tastname
Email :

Password :

Confirm password :

Return to login? Login

Figure 4 Register Page

To create an account the user can access the register account page. Here the user can enter their
details and Firebase authentication procedure creates a log in account for the user to access the
website.

Register command

auth.create_user_with_email_and_password(user_details["email"], user_details["password"])

Page | 13

Create Patient

Balance Heath |

First Name :

Last Name :

Email :

Age :

Condition :

Create Patient

Figure 5 Create Patient page

Logout

Medical personnel will be able to create patients, entering the patient’s detail which are then stored
to the database for that patient.

Add patient command

db.collection(u'patients').document(userid).collection(u'patient_details').document(user_details['e

mail']).set({

u'firstname': user_details['first_name'],

u'lastname': user_details['last_name'],

u'email': user_details['email'],

u'age': user_details['age'],

u'condition': user_details['condition'],

u'activities':[]

)

Page | 14

View Patients

alance Healn Patient W Activity W

View Patients

Firstname Lastname Email Age Condition

User Name user@email.com 90 Stroke

Figure 6 View Patients page

Medical personnel will be able to view each of their patients displayed in a table. Each patient row will
contain a button that will bring the user to a page displaying the selected patients’ personal details
and activities.

Get patients command
docs = db.collection(u'patients').document(userid).collection(u'patient_details').stream()
patients =[]
for doc in docs:
patient = doc.to_dict()
patients.append(patient)

return patients

Page | 15

Create Activity

W o e -

Create Activity

Name :

Description : activity description

Time (seconds) :

Figure 7 Create Activity page

Medical personnel will be able to create activities, adding the activities detail which are then stored
to the database for that activity.

Add activity command

doc_ref = db.collection(u'activities').add({
u'name': activity_details['activity_name'],
u'description': activity_details['description'],
u'time_limit'": activity_details['time_limit']

b

Page | 16

View Activities

i B _

View Activites
Name Description Time Limit (seconds)
Activity 1 Descrtion of activity 30
Activity 2 Descrtion of activity 60
Descrtion of activity 30

Activity 3

Figure 8 View Activities page

Medical personnel will be able to view each of their activities displayed in a table. Each row will contain
the details for each activity.

Get activities command
docs = db.collection(u'activities').stream()
activities =[]
for doc in docs:
activity = doc.to_dict()
activities.append(activity)

return activities

Page | 17

View Activity Performance

i B _

Select Activity

Activity 2
Activity 1
Activity 3 i
~ bV
- +—t—+—t—+ o
ProgreSS SRS R AR R L R R R A Average J 01 02 Ommuﬁ,r::):?‘;)umowomrm
‘B , 1
LA —
L] [} x ot , I
g8 | | v
3 ‘ /
g | L/ s I
Weekl S owe e e L :
y Monthly

Figure 9 View Activity Performance page

Medical personnel will then be able to select activity from the patient’s set activities and view the
patients progress when carrying out that activity.

Get patients activities command
patient_activities =[]
docs = db.collection(u'patient_activities').document(email).collection(u'activities').stream()
for din docs:
activity = d.to_dict()
patient_activities.append(activity)

return patient_activities

Page | 18

Get activity results command

docs =
db.collection(u'patient_activities').document(email).collection(u'activities').document(activity).collec
tion(u'scores').stream()

scores =]

for doc in docs:
activity = doc.to_dict()
scores.append(activity)

return scores

Page | 19

Mobile Application

Class Diagram

BalanceApp

Patient
uiD
email
firstname
lastname 1
.5
BalanceActivity
LinearAcceleration

x

¥

z

MyScanResult
name
macAddress
— rssi

FiresbaseDBConnection

BalanceData

date_set
*average
max

min

Page | 20

Seqguence Diagrams

The sequence diagrams will demonstrate the main use cases outlined in the Functional Specification
document.

Login

_BalanceApp _FirestoreDB

login{usernarme, password)

I I I
| | |
I I I
| | |
: | :
| | |
=~ i i
| | |
WHILE y . y
Isuccess | | |
| authenticateUser{usemame, password) |)
i i i
| | |
} 1 auther Jser{usemame, password) }
} } success }
! success == true } }
| | |
ALT ! T T
i i i
if Yusername || password) | | details do not match |
| f 1
} details do not match(sucess == false) } }
I i I
| | |
i i i
T T T
| | |
I I I
| | |
i i i
| | |
| | |
i I i
| | |
i i i
T T T
I I I	
I i I	
I	
' I	
I
I
Figure 10 Login sequence diagram
Logout
:Bal A
_:FirebaseDBConnection

logout()

SignOut()

|
|
|
|
}
logout) <
|
|
|
|
|
|
|
|
|
|

commllifbeemmmena o

Figure 11 Logout sequence diagram

Page | 21

Register

Bal; A
FirestoreDB FirebaseDBConnection
|
|
|
|
|
p = create((firstname, lastname, email, password)) p:Patient

RegisterPatient(p)

register(firstname, lastname, email, passward),

CreateUserWithEmail&Password(p).

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Figure 12 Register sequence diagram

Connect

z ScanResults: Colloection Movesense
_iBalanceApp <MyScanResult= Device

t
|
I
1
|
|
I
1
I
|
|
1
|
i

| |

I 1 I
WHILE 1 i i
devices are found I | |
| sr ¥ scanBleDevices() |
T T 1
| | I
| | |
I 1 |
| add(sr) " i
| | |
| | |
1 1 I
| 1]
| | 1|
dispaly list : 1 |
I | [
| | |
| | I
. | | |
selectDevice(sr) | | |
| 1 !
[| l
! | |
1] |
! connektt{sr.connectedSerial) ll
| i
1 |
| |
| :

|
] |
] [
| |
| |
|
| |
1 1
l
i

Figure 13 Connect to Movesense device sequence diagram

Page | 22

Disconnect

Retrieve Activities

retrieveActivities()

_BalanceApp

| Device

| T

| I

| I

! l

closeApplication() \‘HJI :

| i

| I

! l

I

| disconnect{sr.machAddrass) :

: |

| I

| I

| I

| I

| I

| I

! I

I

Figure 14 Disconnect from Movesense device sequence diagram
p:Patient Collection: FirestoreDB FirebaseDBConnection

| <BalanceActivy>
| \ | |
| \ ' [|
| \ l [|
| \ ' [|
| \ ! [|
| \ ' [[
| \ : [|
| = pgelEma) | | : |
| \ ' [[
| \ l [|
I laties = eBalancoActiesle) | J :
[T 7
| \ ' [[
| \ : [|
| o attvities = getBalanceActivtigs(8
| p.addActivities(activities) : M(I)
| |
| ' !
| ' l
| ' '
| |

T
[
[
[
|

Figure 15 Retrieve patients activities from Firestore sequence diagram

Page | 23

Perform Activity

_BalanceApp BalanceActivity exData: Collection BalanceData
<LinearAcceleration> Muvesgnse

i | T Device
I | !
| | :
selecExercise(ex) ! l |
> |
starEx(ex, connectedSerial) \,‘ |
| |
| |
| |
WHILE subscrbed = re]]
|

206 =subscribeToACG{connectedSeri)

exData.add(acc)

Upload Results

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

bd.add(exData)

Figure 16 Perform activity sequence diagram

BalanceActivity

onActivityComplets()

s
-

FirebaseDBConnection

uploadResult(exData)

Figure 17 Upload activity results to Firestore sequence diagram

|
|
|
|
|
|
|
|
I
|
|
|
|
71
|
|
|
|
|
|
|
|
|
|
|
|
T
|
|
|
|

uploadResult(exData) .

FirestoreDB

ot e e S)

P

Page | 24

View Progress

FirestoraDB

FirebaseDBConnection

a.getBalanceDatap) List

£
N

_BalanceAnp Collection
| <BelanceActity>
| I
| I
| I
viewProgressactvity) i : :
#| |
| agellcibfachly)
| g
| I
| I
| |
| |
| |
| |
[bd = agbiBalanceData(p) List
| 1
| I
[aceleld) |
[T
| |
displayPrograss(a.bd) : :
| |
i |

Figure 18 View activity progress sequence diagram

b :Callection
<BalanceData

s

e B s e S T

Page | 25

User Interface

Login Screen

The login screen will be the initial screen that the user will view upon opening the application. It will
authenticate users using the entered username and password against the details stored on the
database. If the user does not have an account, they can select the Register link and this will open the
register screen.

Forgot Password?

Don't have an account? Register

Figure 19 Login Screen

Page | 26

Register Screen

If a patient does not have an existing account, they can access the register screen form the login page.
The register screen will allow the patient to create an account using Firebases’ authentication
procedure and will store the patient’s details on the Firestore database.

Create an Account

First name

Last name

Already have an account? Sign In

Figure 20 Register screen

Page | 27

Main Screen

Once the patient has been successfully authenticated and is logged onto the application the patient
will be sent to main screen. Here the application will carry out a scan to check for any nearby Bluetooth
enabled devices. Any devices found containing Movesense within their path name will be displayed in
a list on the page. The user can select the appropriate Movesense device, and the app will connect
with the device. A message will display when the application has successfully connected to the deice.
The screen will also contain a button which will bring them to the Activity List screen.

Movesense Device

Name:
o Rssi:
‘ Mac Address :

Select device to connect to:

View Activity List

Figure 21 Main screen

Page | 28

Activity Details screen

Once an activity has been selected from the patient’s activity list the patient will be brought to the
activity details screen. The activity details will contain links that will allow the patient to view a
description of the activity to be carried out, to perform the activity and to view their progress made
when carrying out the activity.

Activity Description

Perform Activity

View Progress

Figure 22 Activity Details screen

Page | 29

Activity Description

Upon selecting the activity description button the patient will be sent to the Activity Description
screen. Here the description of the activity to be carried out will be detailed to the patient. The
description will be retrieved from the database with the activities.

A decription of the activity that the
patientistocarryoutcccceeeeeannnn.

RN RS E R R R E SRS RS R

Y

SRR S S ESS R E SRR R

Figure 23 Activity Details screen

Page | 30

Perform Activity screen

On selecting the perform activity button the patient will be passed to the Perform Activity screen.
Here the patient will carry out the activity described in the Activity Description screen while wearing
the Movesense sensor device. The application will output a series of beeps alerting the user of when
to begin the activity and another when to finish. Once the patient has been alerted to begin the
activity, the application will subscribe to a sensor and begin requesting accelerometer data. The app
will display the data to a chart and cancels the subscription once the activity has completed. Upon
completion the gathered sensor data as well as some other additional information is uploaded to the
Firestore database.

Accelerometer Data

% § y: -4

Acceleration vs. Time

tis)

Figure 24 Perform Activity screen

Page | 31

View Progress screen

On selecting the View Progress button, the patient is brought to the View Progress screen. Upon
opening the screen, the application will carry out a request to Firestore to gather the patient’s
previous results. An average score from each of patient’s performances will have been calculated and
the data will be displayed to a graph for the patient to view their progression while carrying out the
selected activity.

Progress Report

Figure 25 View Progress screen

Page | 32

Bibliography

DigitalOcean, 2021. How to make a Web Application using Flask in Python 3
Available at: How To Make a Web Application Using Flask in Python 3 | DigitalOcean
[Accessed 09 January 2022].

Firebase, 2021. Cloud Firestore
Available at: Cloud Firestore | Firebase Documentation (google.com)
[Accessed 09 January 2022].

Full Stack Python, 2021. Jinja2
Available at: Jinja2 - Full Stack Python
[Accessed 09 January 2022].

Wikipedia, 2021. Android Studio
Available at: Android Studio - Wikipedia
[Accessed 06 January 2022].

Wikipedia, 2021. How To Make a Web Application Using Flask in Python 3
Available at: https://www.digitalocean.com/community/tutorials/how-to-make-a-web-application-
using-flask-in-python-3 [Accessed 06 January 2022].

Page | 33

https://www.digitalocean.com/community/tutorials/how-to-make-a-web-application-using-flask-in-python-3
https://firebase.google.com/docs/firestore/
https://www.fullstackpython.com/jinja2.html
https://en.wikipedia.org/wiki/Android_Studio
https://www.digitalocean.com/community/tutorials/how-to-make-a-web-application-using-flask-in-python-3
https://www.digitalocean.com/community/tutorials/how-to-make-a-web-application-using-flask-in-python-3

